| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674 | 
                        - #
 - #  Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - 
 - import logging
 - import copy
 - import time
 - import os
 - 
 - from huggingface_hub import snapshot_download
 - 
 - from api.utils.file_utils import get_project_base_directory
 - from .operators import *  # noqa: F403
 - from . import operators
 - import math
 - import numpy as np
 - import cv2
 - import onnxruntime as ort
 - 
 - from .postprocess import build_post_process
 - 
 - loaded_models = {}
 - 
 - def transform(data, ops=None):
 -     """ transform """
 -     if ops is None:
 -         ops = []
 -     for op in ops:
 -         data = op(data)
 -         if data is None:
 -             return None
 -     return data
 - 
 - 
 - def create_operators(op_param_list, global_config=None):
 -     """
 -     create operators based on the config
 - 
 -     Args:
 -         params(list): a dict list, used to create some operators
 -     """
 -     assert isinstance(
 -         op_param_list, list), ('operator config should be a list')
 -     ops = []
 -     for operator in op_param_list:
 -         assert isinstance(operator,
 -                           dict) and len(operator) == 1, "yaml format error"
 -         op_name = list(operator)[0]
 -         param = {} if operator[op_name] is None else operator[op_name]
 -         if global_config is not None:
 -             param.update(global_config)
 -         op = getattr(operators, op_name)(**param)
 -         ops.append(op)
 -     return ops
 - 
 - 
 - def load_model(model_dir, nm):
 -     model_file_path = os.path.join(model_dir, nm + ".onnx")
 -     global loaded_models
 -     loaded_model = loaded_models.get(model_file_path)
 -     if loaded_model:
 -         logging.info(f"load_model {model_file_path} reuses cached model")
 -         return loaded_model
 - 
 -     if not os.path.exists(model_file_path):
 -         raise ValueError("not find model file path {}".format(
 -             model_file_path))
 - 
 -     def cuda_is_available():
 -         try:
 -             import torch
 -             if torch.cuda.is_available():
 -                 return True
 -         except Exception:
 -             return False
 -         return False
 - 
 -     options = ort.SessionOptions()
 -     options.enable_cpu_mem_arena = False
 -     options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
 -     options.intra_op_num_threads = 2
 -     options.inter_op_num_threads = 2
 - 
 -     # https://github.com/microsoft/onnxruntime/issues/9509#issuecomment-951546580
 -     # Shrink GPU memory after execution
 -     run_options = ort.RunOptions()
 -     if cuda_is_available():
 -         cuda_provider_options = {
 -             "device_id": 0, # Use specific GPU
 -             "gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
 -             "arena_extend_strategy": "kNextPowerOfTwo",  # gpu memory allocation strategy
 -         }
 -         sess = ort.InferenceSession(
 -             model_file_path,
 -             options=options,
 -             providers=['CUDAExecutionProvider'],
 -             provider_options=[cuda_provider_options]
 -             )
 -         run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:0")
 -         logging.info(f"load_model {model_file_path} uses GPU")
 -     else:
 -         sess = ort.InferenceSession(
 -             model_file_path,
 -             options=options,
 -             providers=['CPUExecutionProvider'])
 -         run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
 -         logging.info(f"load_model {model_file_path} uses CPU")
 -     loaded_model = (sess, run_options)
 -     loaded_models[model_file_path] = loaded_model
 -     return loaded_model
 - 
 - 
 - class TextRecognizer:
 -     def __init__(self, model_dir):
 -         self.rec_image_shape = [int(v) for v in "3, 48, 320".split(",")]
 -         self.rec_batch_num = 16
 -         postprocess_params = {
 -             'name': 'CTCLabelDecode',
 -             "character_dict_path": os.path.join(model_dir, "ocr.res"),
 -             "use_space_char": True
 -         }
 -         self.postprocess_op = build_post_process(postprocess_params)
 -         self.predictor, self.run_options = load_model(model_dir, 'rec')
 -         self.input_tensor = self.predictor.get_inputs()[0]
 - 
 -     def resize_norm_img(self, img, max_wh_ratio):
 -         imgC, imgH, imgW = self.rec_image_shape
 - 
 -         assert imgC == img.shape[2]
 -         imgW = int((imgH * max_wh_ratio))
 -         w = self.input_tensor.shape[3:][0]
 -         if isinstance(w, str):
 -             pass
 -         elif w is not None and w > 0:
 -             imgW = w
 -         h, w = img.shape[:2]
 -         ratio = w / float(h)
 -         if math.ceil(imgH * ratio) > imgW:
 -             resized_w = imgW
 -         else:
 -             resized_w = int(math.ceil(imgH * ratio))
 - 
 -         resized_image = cv2.resize(img, (resized_w, imgH))
 -         resized_image = resized_image.astype('float32')
 -         resized_image = resized_image.transpose((2, 0, 1)) / 255
 -         resized_image -= 0.5
 -         resized_image /= 0.5
 -         padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
 -         padding_im[:, :, 0:resized_w] = resized_image
 -         return padding_im
 - 
 -     def resize_norm_img_vl(self, img, image_shape):
 - 
 -         imgC, imgH, imgW = image_shape
 -         img = img[:, :, ::-1]  # bgr2rgb
 -         resized_image = cv2.resize(
 -             img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
 -         resized_image = resized_image.astype('float32')
 -         resized_image = resized_image.transpose((2, 0, 1)) / 255
 -         return resized_image
 - 
 -     def resize_norm_img_srn(self, img, image_shape):
 -         imgC, imgH, imgW = image_shape
 - 
 -         img_black = np.zeros((imgH, imgW))
 -         im_hei = img.shape[0]
 -         im_wid = img.shape[1]
 - 
 -         if im_wid <= im_hei * 1:
 -             img_new = cv2.resize(img, (imgH * 1, imgH))
 -         elif im_wid <= im_hei * 2:
 -             img_new = cv2.resize(img, (imgH * 2, imgH))
 -         elif im_wid <= im_hei * 3:
 -             img_new = cv2.resize(img, (imgH * 3, imgH))
 -         else:
 -             img_new = cv2.resize(img, (imgW, imgH))
 - 
 -         img_np = np.asarray(img_new)
 -         img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
 -         img_black[:, 0:img_np.shape[1]] = img_np
 -         img_black = img_black[:, :, np.newaxis]
 - 
 -         row, col, c = img_black.shape
 -         c = 1
 - 
 -         return np.reshape(img_black, (c, row, col)).astype(np.float32)
 - 
 -     def srn_other_inputs(self, image_shape, num_heads, max_text_length):
 - 
 -         imgC, imgH, imgW = image_shape
 -         feature_dim = int((imgH / 8) * (imgW / 8))
 - 
 -         encoder_word_pos = np.array(range(0, feature_dim)).reshape(
 -             (feature_dim, 1)).astype('int64')
 -         gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
 -             (max_text_length, 1)).astype('int64')
 - 
 -         gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
 -         gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
 -             [-1, 1, max_text_length, max_text_length])
 -         gsrm_slf_attn_bias1 = np.tile(
 -             gsrm_slf_attn_bias1,
 -             [1, num_heads, 1, 1]).astype('float32') * [-1e9]
 - 
 -         gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
 -             [-1, 1, max_text_length, max_text_length])
 -         gsrm_slf_attn_bias2 = np.tile(
 -             gsrm_slf_attn_bias2,
 -             [1, num_heads, 1, 1]).astype('float32') * [-1e9]
 - 
 -         encoder_word_pos = encoder_word_pos[np.newaxis, :]
 -         gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
 - 
 -         return [
 -             encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
 -             gsrm_slf_attn_bias2
 -         ]
 - 
 -     def process_image_srn(self, img, image_shape, num_heads, max_text_length):
 -         norm_img = self.resize_norm_img_srn(img, image_shape)
 -         norm_img = norm_img[np.newaxis, :]
 - 
 -         [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
 -             self.srn_other_inputs(image_shape, num_heads, max_text_length)
 - 
 -         gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
 -         gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
 -         encoder_word_pos = encoder_word_pos.astype(np.int64)
 -         gsrm_word_pos = gsrm_word_pos.astype(np.int64)
 - 
 -         return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
 -                 gsrm_slf_attn_bias2)
 - 
 -     def resize_norm_img_sar(self, img, image_shape,
 -                             width_downsample_ratio=0.25):
 -         imgC, imgH, imgW_min, imgW_max = image_shape
 -         h = img.shape[0]
 -         w = img.shape[1]
 -         valid_ratio = 1.0
 -         # make sure new_width is an integral multiple of width_divisor.
 -         width_divisor = int(1 / width_downsample_ratio)
 -         # resize
 -         ratio = w / float(h)
 -         resize_w = math.ceil(imgH * ratio)
 -         if resize_w % width_divisor != 0:
 -             resize_w = round(resize_w / width_divisor) * width_divisor
 -         if imgW_min is not None:
 -             resize_w = max(imgW_min, resize_w)
 -         if imgW_max is not None:
 -             valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
 -             resize_w = min(imgW_max, resize_w)
 -         resized_image = cv2.resize(img, (resize_w, imgH))
 -         resized_image = resized_image.astype('float32')
 -         # norm
 -         if image_shape[0] == 1:
 -             resized_image = resized_image / 255
 -             resized_image = resized_image[np.newaxis, :]
 -         else:
 -             resized_image = resized_image.transpose((2, 0, 1)) / 255
 -         resized_image -= 0.5
 -         resized_image /= 0.5
 -         resize_shape = resized_image.shape
 -         padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
 -         padding_im[:, :, 0:resize_w] = resized_image
 -         pad_shape = padding_im.shape
 - 
 -         return padding_im, resize_shape, pad_shape, valid_ratio
 - 
 -     def resize_norm_img_spin(self, img):
 -         img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 -         # return padding_im
 -         img = cv2.resize(img, tuple([100, 32]), cv2.INTER_CUBIC)
 -         img = np.array(img, np.float32)
 -         img = np.expand_dims(img, -1)
 -         img = img.transpose((2, 0, 1))
 -         mean = [127.5]
 -         std = [127.5]
 -         mean = np.array(mean, dtype=np.float32)
 -         std = np.array(std, dtype=np.float32)
 -         mean = np.float32(mean.reshape(1, -1))
 -         stdinv = 1 / np.float32(std.reshape(1, -1))
 -         img -= mean
 -         img *= stdinv
 -         return img
 - 
 -     def resize_norm_img_svtr(self, img, image_shape):
 - 
 -         imgC, imgH, imgW = image_shape
 -         resized_image = cv2.resize(
 -             img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
 -         resized_image = resized_image.astype('float32')
 -         resized_image = resized_image.transpose((2, 0, 1)) / 255
 -         resized_image -= 0.5
 -         resized_image /= 0.5
 -         return resized_image
 - 
 -     def resize_norm_img_abinet(self, img, image_shape):
 - 
 -         imgC, imgH, imgW = image_shape
 - 
 -         resized_image = cv2.resize(
 -             img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
 -         resized_image = resized_image.astype('float32')
 -         resized_image = resized_image / 255.
 - 
 -         mean = np.array([0.485, 0.456, 0.406])
 -         std = np.array([0.229, 0.224, 0.225])
 -         resized_image = (
 -             resized_image - mean[None, None, ...]) / std[None, None, ...]
 -         resized_image = resized_image.transpose((2, 0, 1))
 -         resized_image = resized_image.astype('float32')
 - 
 -         return resized_image
 - 
 -     def norm_img_can(self, img, image_shape):
 - 
 -         img = cv2.cvtColor(
 -             img, cv2.COLOR_BGR2GRAY)  # CAN only predict gray scale image
 - 
 -         if self.rec_image_shape[0] == 1:
 -             h, w = img.shape
 -             _, imgH, imgW = self.rec_image_shape
 -             if h < imgH or w < imgW:
 -                 padding_h = max(imgH - h, 0)
 -                 padding_w = max(imgW - w, 0)
 -                 img_padded = np.pad(img, ((0, padding_h), (0, padding_w)),
 -                                     'constant',
 -                                     constant_values=(255))
 -                 img = img_padded
 - 
 -         img = np.expand_dims(img, 0) / 255.0  # h,w,c -> c,h,w
 -         img = img.astype('float32')
 - 
 -         return img
 - 
 -     def __call__(self, img_list):
 -         img_num = len(img_list)
 -         # Calculate the aspect ratio of all text bars
 -         width_list = []
 -         for img in img_list:
 -             width_list.append(img.shape[1] / float(img.shape[0]))
 -         # Sorting can speed up the recognition process
 -         indices = np.argsort(np.array(width_list))
 -         rec_res = [['', 0.0]] * img_num
 -         batch_num = self.rec_batch_num
 -         st = time.time()
 - 
 -         for beg_img_no in range(0, img_num, batch_num):
 -             end_img_no = min(img_num, beg_img_no + batch_num)
 -             norm_img_batch = []
 -             imgC, imgH, imgW = self.rec_image_shape[:3]
 -             max_wh_ratio = imgW / imgH
 -             # max_wh_ratio = 0
 -             for ino in range(beg_img_no, end_img_no):
 -                 h, w = img_list[indices[ino]].shape[0:2]
 -                 wh_ratio = w * 1.0 / h
 -                 max_wh_ratio = max(max_wh_ratio, wh_ratio)
 -             for ino in range(beg_img_no, end_img_no):
 -                 norm_img = self.resize_norm_img(img_list[indices[ino]],
 -                                                 max_wh_ratio)
 -                 norm_img = norm_img[np.newaxis, :]
 -                 norm_img_batch.append(norm_img)
 -             norm_img_batch = np.concatenate(norm_img_batch)
 -             norm_img_batch = norm_img_batch.copy()
 - 
 -             input_dict = {}
 -             input_dict[self.input_tensor.name] = norm_img_batch
 -             for i in range(100000):
 -                 try:
 -                     outputs = self.predictor.run(None, input_dict, self.run_options)
 -                     break
 -                 except Exception as e:
 -                     if i >= 3:
 -                         raise e
 -                     time.sleep(5)
 -             preds = outputs[0]
 -             rec_result = self.postprocess_op(preds)
 -             for rno in range(len(rec_result)):
 -                 rec_res[indices[beg_img_no + rno]] = rec_result[rno]
 - 
 -         return rec_res, time.time() - st
 - 
 - 
 - class TextDetector:
 -     def __init__(self, model_dir):
 -         pre_process_list = [{
 -             'DetResizeForTest': {
 -                 'limit_side_len': 960,
 -                 'limit_type': "max",
 -             }
 -         }, {
 -             'NormalizeImage': {
 -                 'std': [0.229, 0.224, 0.225],
 -                 'mean': [0.485, 0.456, 0.406],
 -                 'scale': '1./255.',
 -                 'order': 'hwc'
 -             }
 -         }, {
 -             'ToCHWImage': None
 -         }, {
 -             'KeepKeys': {
 -                 'keep_keys': ['image', 'shape']
 -             }
 -         }]
 -         postprocess_params = {"name": "DBPostProcess", "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000,
 -                               "unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
 - 
 -         self.postprocess_op = build_post_process(postprocess_params)
 -         self.predictor, self.run_options = load_model(model_dir, 'det')
 -         self.input_tensor = self.predictor.get_inputs()[0]
 - 
 -         img_h, img_w = self.input_tensor.shape[2:]
 -         if isinstance(img_h, str) or isinstance(img_w, str):
 -             pass
 -         elif img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
 -             pre_process_list[0] = {
 -                 'DetResizeForTest': {
 -                     'image_shape': [img_h, img_w]
 -                 }
 -             }
 -         self.preprocess_op = create_operators(pre_process_list)
 - 
 -     def order_points_clockwise(self, pts):
 -         rect = np.zeros((4, 2), dtype="float32")
 -         s = pts.sum(axis=1)
 -         rect[0] = pts[np.argmin(s)]
 -         rect[2] = pts[np.argmax(s)]
 -         tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
 -         diff = np.diff(np.array(tmp), axis=1)
 -         rect[1] = tmp[np.argmin(diff)]
 -         rect[3] = tmp[np.argmax(diff)]
 -         return rect
 - 
 -     def clip_det_res(self, points, img_height, img_width):
 -         for pno in range(points.shape[0]):
 -             points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
 -             points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
 -         return points
 - 
 -     def filter_tag_det_res(self, dt_boxes, image_shape):
 -         img_height, img_width = image_shape[0:2]
 -         dt_boxes_new = []
 -         for box in dt_boxes:
 -             if isinstance(box, list):
 -                 box = np.array(box)
 -             box = self.order_points_clockwise(box)
 -             box = self.clip_det_res(box, img_height, img_width)
 -             rect_width = int(np.linalg.norm(box[0] - box[1]))
 -             rect_height = int(np.linalg.norm(box[0] - box[3]))
 -             if rect_width <= 3 or rect_height <= 3:
 -                 continue
 -             dt_boxes_new.append(box)
 -         dt_boxes = np.array(dt_boxes_new)
 -         return dt_boxes
 - 
 -     def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
 -         img_height, img_width = image_shape[0:2]
 -         dt_boxes_new = []
 -         for box in dt_boxes:
 -             if isinstance(box, list):
 -                 box = np.array(box)
 -             box = self.clip_det_res(box, img_height, img_width)
 -             dt_boxes_new.append(box)
 -         dt_boxes = np.array(dt_boxes_new)
 -         return dt_boxes
 - 
 -     def __call__(self, img):
 -         ori_im = img.copy()
 -         data = {'image': img}
 - 
 -         st = time.time()
 -         data = transform(data, self.preprocess_op)
 -         img, shape_list = data
 -         if img is None:
 -             return None, 0
 -         img = np.expand_dims(img, axis=0)
 -         shape_list = np.expand_dims(shape_list, axis=0)
 -         img = img.copy()
 -         input_dict = {}
 -         input_dict[self.input_tensor.name] = img
 -         for i in range(100000):
 -             try:
 -                 outputs = self.predictor.run(None, input_dict, self.run_options)
 -                 break
 -             except Exception as e:
 -                 if i >= 3:
 -                     raise e
 -                 time.sleep(5)
 - 
 -         post_result = self.postprocess_op({"maps": outputs[0]}, shape_list)
 -         dt_boxes = post_result[0]['points']
 -         dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
 - 
 -         return dt_boxes, time.time() - st
 - 
 - 
 - class OCR:
 -     def __init__(self, model_dir=None):
 -         """
 -         If you have trouble downloading HuggingFace models, -_^ this might help!!
 - 
 -         For Linux:
 -         export HF_ENDPOINT=https://hf-mirror.com
 - 
 -         For Windows:
 -         Good luck
 -         ^_-
 - 
 -         """
 -         if not model_dir:
 -             try:
 -                 model_dir = os.path.join(
 -                         get_project_base_directory(),
 -                         "rag/res/deepdoc")
 -                 self.text_detector = TextDetector(model_dir)
 -                 self.text_recognizer = TextRecognizer(model_dir)
 -             except Exception:
 -                 model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
 -                                               local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
 -                                               local_dir_use_symlinks=False)
 -                 self.text_detector = TextDetector(model_dir)
 -                 self.text_recognizer = TextRecognizer(model_dir)
 - 
 -         self.drop_score = 0.5
 -         self.crop_image_res_index = 0
 - 
 -     def get_rotate_crop_image(self, img, points):
 -         '''
 -         img_height, img_width = img.shape[0:2]
 -         left = int(np.min(points[:, 0]))
 -         right = int(np.max(points[:, 0]))
 -         top = int(np.min(points[:, 1]))
 -         bottom = int(np.max(points[:, 1]))
 -         img_crop = img[top:bottom, left:right, :].copy()
 -         points[:, 0] = points[:, 0] - left
 -         points[:, 1] = points[:, 1] - top
 -         '''
 -         assert len(points) == 4, "shape of points must be 4*2"
 -         img_crop_width = int(
 -             max(
 -                 np.linalg.norm(points[0] - points[1]),
 -                 np.linalg.norm(points[2] - points[3])))
 -         img_crop_height = int(
 -             max(
 -                 np.linalg.norm(points[0] - points[3]),
 -                 np.linalg.norm(points[1] - points[2])))
 -         pts_std = np.float32([[0, 0], [img_crop_width, 0],
 -                               [img_crop_width, img_crop_height],
 -                               [0, img_crop_height]])
 -         M = cv2.getPerspectiveTransform(points, pts_std)
 -         dst_img = cv2.warpPerspective(
 -             img,
 -             M, (img_crop_width, img_crop_height),
 -             borderMode=cv2.BORDER_REPLICATE,
 -             flags=cv2.INTER_CUBIC)
 -         dst_img_height, dst_img_width = dst_img.shape[0:2]
 -         if dst_img_height * 1.0 / dst_img_width >= 1.5:
 -             dst_img = np.rot90(dst_img)
 -         return dst_img
 - 
 -     def sorted_boxes(self, dt_boxes):
 -         """
 -         Sort text boxes in order from top to bottom, left to right
 -         args:
 -             dt_boxes(array):detected text boxes with shape [4, 2]
 -         return:
 -             sorted boxes(array) with shape [4, 2]
 -         """
 -         num_boxes = dt_boxes.shape[0]
 -         sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
 -         _boxes = list(sorted_boxes)
 - 
 -         for i in range(num_boxes - 1):
 -             for j in range(i, -1, -1):
 -                 if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 10 and \
 -                         (_boxes[j + 1][0][0] < _boxes[j][0][0]):
 -                     tmp = _boxes[j]
 -                     _boxes[j] = _boxes[j + 1]
 -                     _boxes[j + 1] = tmp
 -                 else:
 -                     break
 -         return _boxes
 - 
 -     def detect(self, img):
 -         time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
 - 
 -         if img is None:
 -             return None, None, time_dict
 - 
 -         start = time.time()
 -         dt_boxes, elapse = self.text_detector(img)
 -         time_dict['det'] = elapse
 - 
 -         if dt_boxes is None:
 -             end = time.time()
 -             time_dict['all'] = end - start
 -             return None, None, time_dict
 - 
 -         return zip(self.sorted_boxes(dt_boxes), [
 -                    ("", 0) for _ in range(len(dt_boxes))])
 - 
 -     def recognize(self, ori_im, box):
 -         img_crop = self.get_rotate_crop_image(ori_im, box)
 - 
 -         rec_res, elapse = self.text_recognizer([img_crop])
 -         text, score = rec_res[0]
 -         if score < self.drop_score:
 -             return ""
 -         return text
 - 
 -     def recognize_batch(self, img_list):
 -         rec_res, elapse = self.text_recognizer(img_list)
 -         texts = []
 -         for i in range(len(rec_res)):
 -             text, score = rec_res[i]
 -             if score < self.drop_score:
 -                 text = ""
 -             texts.append(text)
 -         return texts
 - 
 -     def __call__(self, img, cls=True):
 -         time_dict = {'det': 0, 'rec': 0, 'cls': 0, 'all': 0}
 - 
 -         if img is None:
 -             return None, None, time_dict
 - 
 -         start = time.time()
 -         ori_im = img.copy()
 -         dt_boxes, elapse = self.text_detector(img)
 -         time_dict['det'] = elapse
 - 
 -         if dt_boxes is None:
 -             end = time.time()
 -             time_dict['all'] = end - start
 -             return None, None, time_dict
 - 
 -         img_crop_list = []
 - 
 -         dt_boxes = self.sorted_boxes(dt_boxes)
 - 
 -         for bno in range(len(dt_boxes)):
 -             tmp_box = copy.deepcopy(dt_boxes[bno])
 -             img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
 -             img_crop_list.append(img_crop)
 - 
 -         rec_res, elapse = self.text_recognizer(img_crop_list)
 - 
 -         time_dict['rec'] = elapse
 - 
 -         filter_boxes, filter_rec_res = [], []
 -         for box, rec_result in zip(dt_boxes, rec_res):
 -             text, score = rec_result
 -             if score >= self.drop_score:
 -                 filter_boxes.append(box)
 -                 filter_rec_res.append(rec_result)
 -         end = time.time()
 -         time_dict['all'] = end - start
 - 
 -         # for bno in range(len(img_crop_list)):
 -         #    print(f"{bno}, {rec_res[bno]}")
 - 
 -         return list(zip([a.tolist() for a in filter_boxes], filter_rec_res))
 
 
  |