- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - 
 - import json
 - import math
 - import re
 - import logging
 - import copy
 - from elasticsearch_dsl import Q
 - 
 - from rag.nlp import rag_tokenizer, term_weight, synonym
 - 
 - class EsQueryer:
 -     def __init__(self, es):
 -         self.tw = term_weight.Dealer()
 -         self.es = es
 -         self.syn = synonym.Dealer()
 -         self.flds = ["ask_tks^10", "ask_small_tks"]
 - 
 -     @staticmethod
 -     def subSpecialChar(line):
 -         return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|~\^])", r"\\\1", line).strip()
 - 
 -     @staticmethod
 -     def isChinese(line):
 -         arr = re.split(r"[ \t]+", line)
 -         if len(arr) <= 3:
 -             return True
 -         e = 0
 -         for t in arr:
 -             if not re.match(r"[a-zA-Z]+$", t):
 -                 e += 1
 -         return e * 1. / len(arr) >= 0.7
 - 
 -     @staticmethod
 -     def rmWWW(txt):
 -         patts = [
 -             (r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", ""),
 -             (r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
 -             (r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down) ", " ")
 -         ]
 -         for r, p in patts:
 -             txt = re.sub(r, p, txt, flags=re.IGNORECASE)
 -         return txt
 - 
 -     def question(self, txt, tbl="qa", min_match="60%"):
 -         txt = re.sub(
 -             r"[ :\r\n\t,,。??/`!!&\^%%]+",
 -             " ",
 -             rag_tokenizer.tradi2simp(
 -                 rag_tokenizer.strQ2B(
 -                     txt.lower()))).strip()
 -         txt = EsQueryer.rmWWW(txt)
 - 
 -         if not self.isChinese(txt):
 -             tks = rag_tokenizer.tokenize(txt).split(" ")
 -             tks_w = self.tw.weights(tks)
 -             tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w]
 -             tks_w = [(re.sub(r"^[a-z0-9]$", "", tk), w) for tk, w in tks_w if tk]
 -             tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk]
 -             q = ["{}^{:.4f}".format(tk, w) for tk, w in tks_w if tk]
 -             for i in range(1, len(tks_w)):
 -                 q.append("\"%s %s\"^%.4f" % (tks_w[i - 1][0], tks_w[i][0], max(tks_w[i - 1][1], tks_w[i][1])*2))
 -             if not q:
 -                 q.append(txt)
 -             return Q("bool",
 -                      must=Q("query_string", fields=self.flds,
 -                             type="best_fields", query=" ".join(q),
 -                             boost=1)#, minimum_should_match=min_match)
 -                      ), tks
 - 
 -         def need_fine_grained_tokenize(tk):
 -             if len(tk) < 4:
 -                 return False
 -             if re.match(r"[0-9a-z\.\+#_\*-]+$", tk):
 -                 return False
 -             return True
 - 
 -         qs, keywords = [], []
 -         for tt in self.tw.split(txt)[:256]:  # .split(" "):
 -             if not tt:
 -                 continue
 -             twts = self.tw.weights([tt])
 -             syns = self.syn.lookup(tt)
 -             logging.info(json.dumps(twts, ensure_ascii=False))
 -             tms = []
 -             for tk, w in sorted(twts, key=lambda x: x[1] * -1):
 -                 sm = rag_tokenizer.fine_grained_tokenize(tk).split(" ") if need_fine_grained_tokenize(tk) else []
 -                 sm = [
 -                     re.sub(
 -                         r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+",
 -                         "",
 -                         m) for m in sm]
 -                 sm = [EsQueryer.subSpecialChar(m) for m in sm if len(m) > 1]
 -                 sm = [m for m in sm if len(m) > 1]
 -                 if len(sm) < 2:
 -                     sm = []
 - 
 -                 keywords.append(re.sub(r"[ \\\"']+", "", tk))
 -                 if len(keywords) >= 12: break
 - 
 -                 tk_syns = self.syn.lookup(tk)
 -                 tk = EsQueryer.subSpecialChar(tk)
 -                 if tk.find(" ") > 0:
 -                     tk = "\"%s\"" % tk
 -                 if tk_syns:
 -                     tk = f"({tk} %s)" % " ".join(tk_syns)
 -                 if sm:
 -                     tk = f"{tk} OR \"%s\" OR (\"%s\"~2)^0.5" % (
 -                         " ".join(sm), " ".join(sm))
 -                 if tk.strip():
 -                     tms.append((tk, w))
 - 
 -             tms = " ".join([f"({t})^{w}" for t, w in tms])
 - 
 -             if len(twts) > 1:
 -                 tms += f" (\"%s\"~4)^1.5" % (" ".join([t for t, _ in twts]))
 -             if re.match(r"[0-9a-z ]+$", tt):
 -                 tms = f"(\"{tt}\" OR \"%s\")" % rag_tokenizer.tokenize(tt)
 - 
 -             syns = " OR ".join(
 -                 ["\"%s\"^0.7" % EsQueryer.subSpecialChar(rag_tokenizer.tokenize(s)) for s in syns])
 -             if syns:
 -                 tms = f"({tms})^5 OR ({syns})^0.7"
 - 
 -             qs.append(tms)
 - 
 -         flds = copy.deepcopy(self.flds)
 -         mst = []
 -         if qs:
 -             mst.append(
 -                 Q("query_string", fields=flds, type="best_fields",
 -                   query=" OR ".join([f"({t})" for t in qs if t]), boost=1, minimum_should_match=min_match)
 -             )
 - 
 -         return Q("bool",
 -                  must=mst,
 -                  ), keywords
 - 
 -     def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3,
 -                           vtweight=0.7):
 -         from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
 -         import numpy as np
 -         sims = CosineSimilarity([avec], bvecs)
 -         tksim = self.token_similarity(atks, btkss)
 -         return np.array(sims[0]) * vtweight + \
 -             np.array(tksim) * tkweight, tksim, sims[0]
 - 
 -     def token_similarity(self, atks, btkss):
 -         def toDict(tks):
 -             d = {}
 -             if isinstance(tks, str):
 -                 tks = tks.split(" ")
 -             for t, c in self.tw.weights(tks):
 -                 if t not in d:
 -                     d[t] = 0
 -                 d[t] += c
 -             return d
 - 
 -         atks = toDict(atks)
 -         btkss = [toDict(tks) for tks in btkss]
 -         return [self.similarity(atks, btks) for btks in btkss]
 - 
 -     def similarity(self, qtwt, dtwt):
 -         if isinstance(dtwt, type("")):
 -             dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt))}
 -         if isinstance(qtwt, type("")):
 -             qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt))}
 -         s = 1e-9
 -         for k, v in qtwt.items():
 -             if k in dtwt:
 -                 s += v  # * dtwt[k]
 -         q = 1e-9
 -         for k, v in qtwt.items():
 -             q += v  # * v
 -         #d = 1e-9
 -         # for k, v in dtwt.items():
 -         #    d += v * v
 -         return s / q / max(1, math.sqrt(math.log10(max(len(qtwt.keys()), len(dtwt.keys())))))# math.sqrt(q) / math.sqrt(d)
 
 
  |