Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

general_purpose_chatbot.md 5.2KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. ---
  2. sidebar_position: 2
  3. slug: /general_purpose_chatbot
  4. ---
  5. # Create a general-purpose chatbot
  6. Chatbot is one of the most common AI scenarios. However, effectively understanding user queries and responding appropriately remains a challenge. RAGFlow's general-purpose chatbot agent is our attempt to tackle this longstanding issue.
  7. This chatbot closely resembles the chatbot introduced in [Start an AI chat](../start_chat.md), but with a key difference - it introduces a reflective mechanism that allows it to improve the retrieval from the target knowledge bases by rewriting the user's query.
  8. This document provides guides on creating such a chatbot using our chatbot template.
  9. ## Prerequisites
  10. 1. Ensure you have properly set the LLM to use. See the guides on [Configure your API key](../llm_api_key_setup.md) or [Deploy a local LLM](../deploy_local_llm.mdx) for more information.
  11. 2. Ensure you have a knowledge base configured and the corresponding files properly parsed. See the guide on [Configure a knowledge base](../configure_knowledge_base.md) for more information.
  12. 3. Make sure you have read the [Introduction to Agentic RAG](./agentic_rag_introduction.md).
  13. ## Create a chatbot agent from template
  14. To create a general-purpose chatbot agent using our template:
  15. 1. Click the **Agent** tab in the middle top of the page to show the **Agent** page.
  16. 2. Click **+ Create agent** on the top right of the page to show the **agent template** page.
  17. 3. On the **agent template** page, hover over the card on **General-purpose chatbot** and click **Use this template**.
  18. *You are now directed to the **no-code workflow editor** page.*
  19. ![workflow_editor](https://github.com/user-attachments/assets/52e7dc62-4bf5-4fbb-ab73-4a6e252065f0)
  20. :::tip NOTE
  21. RAGFlow's no-code editor spares you the trouble of coding, making agent development effortless.
  22. :::
  23. ## Understand each component in the template
  24. Here’s a breakdown of each component and its role and requirements in the chatbot template:
  25. - **Begin**
  26. - Function: Sets the opening greeting for the user.
  27. - Purpose: Establishes a welcoming atmosphere and prepares the user for interaction.
  28. - **Interact**
  29. - Function: Serves as the interface between human and the bot.
  30. - Role: Acts as the downstream component of **Begin**.
  31. - **Retrieval**
  32. - Function: Retrieves information from specified knowledge base(s).
  33. - Requirement: Must have `knowledgebases` set up to function.
  34. - **Relevant**
  35. - Function: Assesses the relevance of the retrieved information from the **Retrieval** component to the user query.
  36. - Process:
  37. - If relevant, it directs the data to the **Generate** component for final response generation.
  38. - Otherwise, it triggers the **Rewrite** component to refine the user query and redo the retrival process.
  39. - **Generate**
  40. - Function: Prompts the LLM to generate responses based on the retrieved information.
  41. - Note: The prompt settings allow you to control the way in which the LLM generates responses. Be sure to review the prompts and make necessary changes.
  42. - **Rewrite**:
  43. - Function: Refines a user query when no relevant information from the knowledge base is retrieved.
  44. - Usage: Often used in conjunction with **Relevant** and **Retrieval** to create a reflective/feedback loop.
  45. ## Configure your chatbot agent
  46. 1. Click **Begin** to set an opening greeting:
  47. ![opener](https://github.com/user-attachments/assets/4416bc16-2a84-4f24-a19b-6dc8b1de0908)
  48. 2. Click **Retrieval** to select the right knowledge base(s) and make any necessary adjustments:
  49. ![setting_knowledge_bases](https://github.com/user-attachments/assets/5f694820-5651-45bc-afd6-cf580ca0228d)
  50. 3. Click **Generate** to configure the LLM's summarization behavior:
  51. 3.1. Confirm the model.
  52. 3.2. Review the prompt settings. If there are variables, ensure they match the correct component IDs:
  53. ![prompt_settings](https://github.com/user-attachments/assets/19e94ea7-7f62-4b73-b526-32fcfa62f1e9)
  54. 4. Click **Relevant** to review or change its settings:
  55. *You may retain the current settings, but feel free to experiment with changes to understand how the agent operates.*
  56. ![relevant_settings](https://github.com/user-attachments/assets/9ff7fdd8-7a69-4ee2-bfba-c7fb8029150f)
  57. 5. Click **Rewrite** to select a different model for query rewriting or update the maximum loop times for query rewriting:
  58. ![choose_model](https://github.com/user-attachments/assets/2bac1d6c-c4f1-42ac-997b-102858c3f550)
  59. ![loop_time](https://github.com/user-attachments/assets/09a4ce34-7aac-496f-aa59-d8aa33bf0b1f)
  60. :::danger NOTE
  61. Increasing the maximum loop times may significantly extend the time required to receive the final response.
  62. :::
  63. 1. Update your workflow where you see necessary.
  64. 2. Click to **Save** to apply your changes.
  65. *Your agent appears as one of the agent cards on the **Agent** page.*
  66. ## Test your chatbot agent
  67. 1. Find your chatbot agent on the **Agent** page:
  68. ![find_chatbot](https://github.com/user-attachments/assets/6e6382c6-9a86-4190-9fdd-e363b7f64ba9)
  69. 2. Experiment with your questions to verify if this chatbot functions as intended:
  70. ![test_chatbot](https://github.com/user-attachments/assets/c074d3bd-4c39-4b05-a68b-1fd361f256b3)