- #
- # Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
-
- import os
- import sys
- sys.path.insert(
- 0,
- os.path.abspath(
- os.path.join(
- os.path.dirname(
- os.path.abspath(__file__)),
- '../../')))
-
- from deepdoc.vision.seeit import draw_box
- from deepdoc.vision import OCR, init_in_out
- import argparse
- import numpy as np
- import trio
-
- # os.environ['CUDA_VISIBLE_DEVICES'] = '0,2' #2 gpus, uncontinuous
- os.environ['CUDA_VISIBLE_DEVICES'] = '0' #1 gpu
- # os.environ['CUDA_VISIBLE_DEVICES'] = '' #cpu
-
- def main(args):
- import torch.cuda
-
- cuda_devices = torch.cuda.device_count()
- limiter = [trio.CapacityLimiter(1) for _ in range(cuda_devices)] if cuda_devices > 1 else None
- ocr = OCR(parallel_devices = cuda_devices)
- images, outputs = init_in_out(args)
-
-
- def __ocr(i, id, img):
- print("Task {} start".format(i))
- bxs = ocr(np.array(img), id)
- bxs = [(line[0], line[1][0]) for line in bxs]
- bxs = [{
- "text": t,
- "bbox": [b[0][0], b[0][1], b[1][0], b[-1][1]],
- "type": "ocr",
- "score": 1} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]]
- img = draw_box(images[i], bxs, ["ocr"], 1.)
- img.save(outputs[i], quality=95)
- with open(outputs[i] + ".txt", "w+", encoding='utf-8') as f:
- f.write("\n".join([o["text"] for o in bxs]))
-
- print("Task {} done".format(i))
-
- async def __ocr_thread(i, id, img, limiter = None):
- if limiter:
- async with limiter:
- print("Task {} use device {}".format(i, id))
- await trio.to_thread.run_sync(lambda: __ocr(i, id, img))
- else:
- __ocr(i, id, img)
-
- async def __ocr_launcher():
- if cuda_devices > 1:
- async with trio.open_nursery() as nursery:
- for i, img in enumerate(images):
- nursery.start_soon(__ocr_thread, i, i % cuda_devices, img, limiter[i % cuda_devices])
- await trio.sleep(0.1)
- else:
- for i, img in enumerate(images):
- await __ocr_thread(i, 0, img)
-
- trio.run(__ocr_launcher)
-
- print("OCR tasks are all done")
-
-
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument('--inputs',
- help="Directory where to store images or PDFs, or a file path to a single image or PDF",
- required=True)
- parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './ocr_outputs'",
- default="./ocr_outputs")
- args = parser.parse_args()
- main(args)
|