|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- ---
- sidebar_position: 5
- slug: /deploy_local_llm
- ---
-
- # Deploy a local LLM
-
- RAGFlow supports deploying LLMs locally using Ollama or Xinference.
-
- ## Ollama
-
- One-click deployment of local LLMs, that is [Ollama](https://github.com/ollama/ollama).
-
- ### Install
-
- - [Ollama on Linux](https://github.com/ollama/ollama/blob/main/docs/linux.md)
- - [Ollama Windows Preview](https://github.com/ollama/ollama/blob/main/docs/windows.md)
- - [Docker](https://hub.docker.com/r/ollama/ollama)
-
- ### Launch Ollama
-
- Decide which LLM you want to deploy ([here's a list for supported LLM](https://ollama.com/library)), say, **mistral**:
- ```bash
- $ ollama run mistral
- ```
- Or,
- ```bash
- $ docker exec -it ollama ollama run mistral
- ```
-
- ### Use Ollama in RAGFlow
-
- - Go to 'Settings > Model Providers > Models to be added > Ollama'.
-
- 
-
- > Base URL: Enter the base URL where the Ollama service is accessible, like, `http://<your-ollama-endpoint-domain>:11434`.
-
- - Use Ollama Models.
-
- 
-
- ## Xinference
-
- Xorbits Inference([Xinference](https://github.com/xorbitsai/inference)) empowers you to unleash the full potential of cutting-edge AI models.
-
- ### Install
-
- - [pip install "xinference[all]"](https://inference.readthedocs.io/en/latest/getting_started/installation.html)
- - [Docker](https://inference.readthedocs.io/en/latest/getting_started/using_docker_image.html)
-
- To start a local instance of Xinference, run the following command:
- ```bash
- $ xinference-local --host 0.0.0.0 --port 9997
- ```
- ### Launch Xinference
-
- Decide which LLM you want to deploy ([here's a list for supported LLM](https://inference.readthedocs.io/en/latest/models/builtin/)), say, **mistral**.
- Execute the following command to launch the model, remember to replace ${quantization} with your chosen quantization method from the options listed above:
- ```bash
- $ xinference launch -u mistral --model-name mistral-v0.1 --size-in-billions 7 --model-format pytorch --quantization ${quantization}
- ```
-
- ### Use Xinference in RAGFlow
-
- - Go to 'Settings > Model Providers > Models to be added > Xinference'.
-
- 
-
- > Base URL: Enter the base URL where the Xinference service is accessible, like, `http://<your-xinference-endpoint-domain>:9997/v1`.
-
- - Use Xinference Models.
-
- 
- 
|