| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295 | 
                        - #
 - #  Copyright 2019 The FATE Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import json
 - import logging
 - import os
 - import hashlib
 - import copy
 - import time
 - import random
 - import re
 - from timeit import default_timer as timer
 - 
 - from rag.llm import EmbeddingModel, CvModel
 - from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
 - from rag.utils import ELASTICSEARCH
 - from rag.utils import MINIO
 - from rag.utils import rmSpace, findMaxTm
 - 
 - from rag.nlp import huchunk, huqie, search
 - from io import BytesIO
 - import pandas as pd
 - from elasticsearch_dsl import Q
 - from PIL import Image
 - from rag.parser import (
 -     PdfParser,
 -     DocxParser,
 -     ExcelParser
 - )
 - from rag.nlp.huchunk import (
 -     PdfChunker,
 -     DocxChunker,
 -     ExcelChunker,
 -     PptChunker,
 -     TextChunker
 - )
 - from web_server.db import LLMType
 - from web_server.db.services.document_service import DocumentService
 - from web_server.db.services.llm_service import TenantLLMService
 - from web_server.settings import database_logger
 - from web_server.utils import get_format_time
 - from web_server.utils.file_utils import get_project_base_directory
 - 
 - BATCH_SIZE = 64
 - 
 - PDF = PdfChunker(PdfParser())
 - DOC = DocxChunker(DocxParser())
 - EXC = ExcelChunker(ExcelParser())
 - PPT = PptChunker()
 - 
 - 
 - def chuck_doc(name, binary, cvmdl=None):
 -     suff = os.path.split(name)[-1].lower().split(".")[-1]
 -     if suff.find("pdf") >= 0:
 -         return PDF(binary)
 -     if suff.find("doc") >= 0:
 -         return DOC(binary)
 -     if re.match(r"(xlsx|xlsm|xltx|xltm)", suff):
 -         return EXC(binary)
 -     if suff.find("ppt") >= 0:
 -         return PPT(binary)
 -     if cvmdl and re.search(r"\.(jpg|jpeg|png|tif|gif|pcx|tga|exif|fpx|svg|psd|cdr|pcd|dxf|ufo|eps|ai|raw|WMF|webp|avif|apng|icon|ico)$",
 -                      name.lower()):
 -         txt = cvmdl.describe(binary)
 -         field = TextChunker.Fields()
 -         field.text_chunks = [(txt, binary)]
 -         field.table_chunks = []
 - 
 -     return TextChunker()(binary)
 - 
 - 
 - def collect(comm, mod, tm):
 -     docs = DocumentService.get_newly_uploaded(tm, mod, comm)
 -     if len(docs) == 0:
 -         return pd.DataFrame()
 -     docs = pd.DataFrame(docs)
 -     mtm = docs["update_time"].max()
 -     cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm))
 -     return docs
 - 
 - 
 - def set_progress(docid, prog, msg="Processing...", begin=False):
 -     d = {"progress": prog, "progress_msg": msg}
 -     if begin:
 -         d["process_begin_at"] = get_format_time()
 -     try:
 -         DocumentService.update_by_id(
 -             docid, {"progress": prog, "progress_msg": msg})
 -     except Exception as e:
 -         cron_logger.error("set_progress:({}), {}".format(docid, str(e)))
 - 
 - 
 - def build(row, cvmdl):
 -     if row["size"] > DOC_MAXIMUM_SIZE:
 -         set_progress(row["id"], -1, "File size exceeds( <= %dMb )" %
 -                      (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
 -         return []
 - 
 -     res = ELASTICSEARCH.search(Q("term", doc_id=row["id"]))
 -     if ELASTICSEARCH.getTotal(res) > 0:
 -         ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]),
 -                                           scripts="""
 -                                if(!ctx._source.kb_id.contains('%s'))
 -                                  ctx._source.kb_id.add('%s');
 -                                """ % (str(row["kb_id"]), str(row["kb_id"])),
 -             idxnm=search.index_name(row["tenant_id"])
 -         )
 -         set_progress(row["id"], 1, "Done")
 -         return []
 - 
 -     random.seed(time.time())
 -     set_progress(row["id"], random.randint(0, 20) /
 -                  100., "Finished preparing! Start to slice file!", True)
 -     try:
 -         cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
 -         obj = chuck_doc(row["name"], MINIO.get(row["kb_id"], row["location"]), cvmdl)
 -     except Exception as e:
 -         if re.search("(No such file|not found)", str(e)):
 -             set_progress(
 -                 row["id"], -1, "Can not find file <%s>" %
 -                 row["doc_name"])
 -         else:
 -             set_progress(
 -                 row["id"], -1, f"Internal server error: %s" %
 -                 str(e).replace(
 -                     "'", ""))
 - 
 -         cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
 - 
 -         return []
 - 
 -     if not obj.text_chunks and not obj.table_chunks:
 -         set_progress(
 -             row["id"],
 -             1,
 -             "Nothing added! Mostly, file type unsupported yet.")
 -         return []
 - 
 -     set_progress(row["id"], random.randint(20, 60) / 100.,
 -                  "Finished slicing files. Start to embedding the content.")
 - 
 -     doc = {
 -         "doc_id": row["id"],
 -         "kb_id": [str(row["kb_id"])],
 -         "docnm_kwd": os.path.split(row["location"])[-1],
 -         "title_tks": huqie.qie(row["name"]),
 -         "updated_at": str(row["update_time"]).replace("T", " ")[:19]
 -     }
 -     doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
 -     output_buffer = BytesIO()
 -     docs = []
 -     md5 = hashlib.md5()
 -     for txt, img in obj.text_chunks:
 -         d = copy.deepcopy(doc)
 -         md5.update((txt + str(d["doc_id"])).encode("utf-8"))
 -         d["_id"] = md5.hexdigest()
 -         d["content_ltks"] = huqie.qie(txt)
 -         d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
 -         if not img:
 -             docs.append(d)
 -             continue
 - 
 -         if isinstance(img, bytes):
 -             output_buffer = BytesIO(img)
 -         else:
 -             img.save(output_buffer, format='JPEG')
 - 
 -         MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
 -         d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
 -         docs.append(d)
 - 
 -     for arr, img in obj.table_chunks:
 -         for i, txt in enumerate(arr):
 -             d = copy.deepcopy(doc)
 -             d["content_ltks"] = huqie.qie(txt)
 -             md5.update((txt + str(d["doc_id"])).encode("utf-8"))
 -             d["_id"] = md5.hexdigest()
 -             if not img:
 -                 docs.append(d)
 -                 continue
 -             img.save(output_buffer, format='JPEG')
 -             MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
 -             d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
 -             docs.append(d)
 -     set_progress(row["id"], random.randint(60, 70) /
 -                  100., "Continue embedding the content.")
 - 
 -     return docs
 - 
 - 
 - def init_kb(row):
 -     idxnm = search.index_name(row["tenant_id"])
 -     if ELASTICSEARCH.indexExist(idxnm):
 -         return
 -     return ELASTICSEARCH.createIdx(idxnm, json.load(
 -         open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
 - 
 - 
 - def embedding(docs, mdl):
 -     tts, cnts = [rmSpace(d["title_tks"]) for d in docs], [rmSpace(d["content_ltks"]) for d in docs]
 -     tk_count = 0
 -     tts, c = mdl.encode(tts)
 -     tk_count += c
 -     cnts, c = mdl.encode(cnts)
 -     tk_count += c
 -     vects = 0.1 * tts + 0.9 * cnts
 -     assert len(vects) == len(docs)
 -     for i, d in enumerate(docs):
 -         d["q_vec"] = vects[i].tolist()
 -     return tk_count
 - 
 - 
 - def model_instance(tenant_id, llm_type):
 -     model_config = TenantLLMService.get_api_key(tenant_id, model_type=LLMType.EMBEDDING)
 -     if not model_config:
 -         model_config = {"llm_factory": "local", "api_key": "", "llm_name": ""}
 -     else: model_config = model_config[0].to_dict()
 -     if llm_type == LLMType.EMBEDDING:
 -         if model_config["llm_factory"] not in EmbeddingModel: return
 -         return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"])
 -     if llm_type == LLMType.IMAGE2TEXT:
 -         if model_config["llm_factory"] not in CvModel: return
 -         return CvModel[model_config.llm_factory](model_config["api_key"], model_config["llm_name"])
 - 
 - 
 - def main(comm, mod):
 -     global model
 -     from rag.llm import HuEmbedding
 -     model = HuEmbedding()
 -     tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm")
 -     tm = findMaxTm(tm_fnm)
 -     rows = collect(comm, mod, tm)
 -     if len(rows) == 0:
 -         return
 - 
 -     tmf = open(tm_fnm, "a+")
 -     for _, r in rows.iterrows():
 -         embd_mdl = model_instance(r["tenant_id"], LLMType.EMBEDDING)
 -         if not embd_mdl:
 -             set_progress(r["id"], -1, "Can't find embedding model!")
 -             cron_logger.error("Tenant({}) can't find embedding model!".format(r["tenant_id"]))
 -             continue
 -         cv_mdl = model_instance(r["tenant_id"], LLMType.IMAGE2TEXT)
 -         st_tm = timer()
 -         cks = build(r, cv_mdl)
 -         if not cks:
 -             tmf.write(str(r["update_time"]) + "\n")
 -             continue
 -         # TODO: exception handler
 -         ## set_progress(r["did"], -1, "ERROR: ")
 -         try:
 -             tk_count = embedding(cks, embd_mdl)
 -         except Exception as e:
 -             set_progress(r["id"], -1, "Embedding error:{}".format(str(e)))
 -             cron_logger.error(str(e))
 -             continue
 - 
 - 
 -         set_progress(r["id"], random.randint(70, 95) / 100.,
 -                      "Finished embedding! Start to build index!")
 -         init_kb(r)
 -         es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
 -         if es_r:
 -             set_progress(r["id"], -1, "Index failure!")
 -             cron_logger.error(str(es_r))
 -         else:
 -             set_progress(r["id"], 1., "Done!")
 -             DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, len(cks), timer()-st_tm)
 -             cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
 - 
 -         tmf.write(str(r["update_time"]) + "\n")
 -     tmf.close()
 - 
 - 
 - if __name__ == "__main__":
 -     peewee_logger = logging.getLogger('peewee')
 -     peewee_logger.propagate = False
 -     peewee_logger.addHandler(database_logger.handlers[0])
 -     peewee_logger.setLevel(database_logger.level)
 - 
 -     from mpi4py import MPI
 -     comm = MPI.COMM_WORLD
 -     main(comm.Get_size(), comm.Get_rank())
 
 
  |