- # Copyright (c) 2024 Microsoft Corporation.
 - # Licensed under the MIT License
 - """
 - Reference:
 -  - [graphrag](https://github.com/microsoft/graphrag)
 - """
 - import re
 - from typing import Any
 - from dataclasses import dataclass
 - from graphrag.general.extractor import Extractor, ENTITY_EXTRACTION_MAX_GLEANINGS
 - from graphrag.light.graph_prompt import PROMPTS
 - from graphrag.utils import pack_user_ass_to_openai_messages, split_string_by_multi_markers, chat_limiter
 - from rag.llm.chat_model import Base as CompletionLLM
 - import networkx as nx
 - from rag.utils import num_tokens_from_string
 - import trio
 - 
 - 
 - @dataclass
 - class GraphExtractionResult:
 -     """Unipartite graph extraction result class definition."""
 - 
 -     output: nx.Graph
 -     source_docs: dict[Any, Any]
 - 
 - 
 - class GraphExtractor(Extractor):
 - 
 -     _max_gleanings: int
 - 
 -     def __init__(
 -         self,
 -         llm_invoker: CompletionLLM,
 -         language: str | None = "English",
 -         entity_types: list[str] | None = None,
 -         example_number: int = 2,
 -         max_gleanings: int | None = None,
 -     ):
 -         super().__init__(llm_invoker, language, entity_types)
 -         """Init method definition."""
 -         self._max_gleanings = (
 -             max_gleanings
 -             if max_gleanings is not None
 -             else ENTITY_EXTRACTION_MAX_GLEANINGS
 -         )
 -         self._example_number = example_number
 -         examples = "\n".join(
 -                 PROMPTS["entity_extraction_examples"][: int(self._example_number)]
 -             )
 - 
 -         example_context_base = dict(
 -             tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
 -             record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
 -             completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
 -             entity_types=",".join(self._entity_types),
 -             language=self._language,
 -         )
 -         # add example's format
 -         examples = examples.format(**example_context_base)
 - 
 -         self._entity_extract_prompt = PROMPTS["entity_extraction"]
 -         self._context_base = dict(
 -             tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
 -             record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
 -             completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
 -             entity_types=",".join(self._entity_types),
 -             examples=examples,
 -             language=self._language,
 -         )
 - 
 -         self._continue_prompt = PROMPTS["entiti_continue_extraction"]
 -         self._if_loop_prompt = PROMPTS["entiti_if_loop_extraction"]
 - 
 -         self._left_token_count = llm_invoker.max_length - num_tokens_from_string(
 -             self._entity_extract_prompt.format(
 -                 **self._context_base, input_text="{input_text}"
 -             ).format(**self._context_base, input_text="")
 -         )
 -         self._left_token_count = max(llm_invoker.max_length * 0.6, self._left_token_count)
 - 
 -     async def _process_single_content(self, chunk_key_dp: tuple[str, str], chunk_seq: int, num_chunks: int, out_results):
 -         token_count = 0
 -         chunk_key = chunk_key_dp[0]
 -         content = chunk_key_dp[1]
 -         hint_prompt = self._entity_extract_prompt.format(
 -             **self._context_base, input_text="{input_text}"
 -         ).format(**self._context_base, input_text=content)
 - 
 -         gen_conf = {}
 -         async with chat_limiter:
 -             final_result = await trio.to_thread.run_sync(lambda: self._chat(hint_prompt, [{"role": "user", "content": "Output:"}], gen_conf))
 -         token_count += num_tokens_from_string(hint_prompt + final_result)
 -         history = pack_user_ass_to_openai_messages("Output:", final_result, self._continue_prompt)
 -         for now_glean_index in range(self._max_gleanings):
 -             async with chat_limiter:
 -                 glean_result = await trio.to_thread.run_sync(lambda: self._chat(hint_prompt, history, gen_conf))
 -             history.extend([{"role": "assistant", "content": glean_result}, {"role": "user", "content": self._continue_prompt}])
 -             token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + hint_prompt + self._continue_prompt)
 -             final_result += glean_result
 -             if now_glean_index == self._max_gleanings - 1:
 -                 break
 - 
 -             async with chat_limiter:
 -                 if_loop_result = await trio.to_thread.run_sync(lambda: self._chat(self._if_loop_prompt, history, gen_conf))
 -             token_count += num_tokens_from_string("\n".join([m["content"] for m in history]) + if_loop_result + self._if_loop_prompt)
 -             if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
 -             if if_loop_result != "yes":
 -                 break
 - 
 -         records = split_string_by_multi_markers(
 -             final_result,
 -             [self._context_base["record_delimiter"], self._context_base["completion_delimiter"]],
 -         )
 -         rcds = []
 -         for record in records:
 -             record = re.search(r"\((.*)\)", record)
 -             if record is None:
 -                 continue
 -             rcds.append(record.group(1))
 -         records = rcds
 -         maybe_nodes, maybe_edges = self._entities_and_relations(chunk_key, records, self._context_base["tuple_delimiter"])
 -         out_results.append((maybe_nodes, maybe_edges, token_count))
 -         if self.callback:
 -             self.callback(0.5+0.1*len(out_results)/num_chunks, msg = f"Entities extraction of chunk {chunk_seq} {len(out_results)}/{num_chunks} done, {len(maybe_nodes)} nodes, {len(maybe_edges)} edges, {token_count} tokens.")
 
 
  |