| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 | 
                        - #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import logging
 - import os
 - import time
 - from abc import ABC
 - from tavily import TavilyClient
 - from agent.tools.base import ToolParamBase, ToolBase, ToolMeta
 - from api.utils.api_utils import timeout
 - 
 - 
 - class TavilySearchParam(ToolParamBase):
 -     """
 -     Define the Retrieval component parameters.
 -     """
 - 
 -     def __init__(self):
 -         self.meta:ToolMeta = {
 -             "name": "tavily_search",
 -             "description": """
 - Tavily is a search engine optimized for LLMs, aimed at efficient, quick and persistent search results. 
 - When searching:
 -    - Start with specific query which should focus on just a single aspect.
 -    - Number of keywords in query should be less than 5.
 -    - Broaden search terms if needed
 -    - Cross-reference information from multiple sources
 -              """,
 -             "parameters": {
 -                 "query": {
 -                     "type": "string",
 -                     "description": "The search keywords to execute with Tavily. The keywords should be the most important words/terms(includes synonyms) from the original request.",
 -                     "default": "{sys.query}",
 -                     "required": True
 -                 },
 -                 "topic": {
 -                     "type": "string",
 -                     "description": "default:general. The category of the search.news is useful for retrieving real-time updates, particularly about politics, sports, and major current events covered by mainstream media sources. general is for broader, more general-purpose searches that may include a wide range of sources.",
 -                     "enum": ["general", "news"],
 -                     "default": "general",
 -                     "required": False,
 -                 },
 -                 "include_domains": {
 -                     "type": "array",
 -                     "description": "default:[]. A list of domains only from which the search results can be included.",
 -                     "default": [],
 -                     "items": {
 -                         "type": "string",
 -                         "description": "Domain name that must be included, e.g. www.yahoo.com"
 -                     },
 -                     "required": False
 -                 },
 -                 "exclude_domains": {
 -                     "type": "array",
 -                     "description": "default:[]. A list of domains from which the search results can not be included",
 -                     "default": [],
 -                     "items": {
 -                         "type": "string",
 -                         "description": "Domain name that must be excluded, e.g. www.yahoo.com"
 -                     },
 -                     "required": False
 -                 },
 -             }
 -         }
 -         super().__init__()
 -         self.api_key = ""
 -         self.search_depth = "basic" # basic/advanced
 -         self.max_results = 6
 -         self.days = 14
 -         self.include_answer = False
 -         self.include_raw_content = False
 -         self.include_images = False
 -         self.include_image_descriptions = False
 - 
 -     def check(self):
 -         self.check_valid_value(self.topic, "Tavily topic: should be in 'general/news'", ["general", "news"])
 -         self.check_valid_value(self.search_depth, "Tavily search depth should be in 'basic/advanced'", ["basic", "advanced"])
 -         self.check_positive_integer(self.max_results, "Tavily max result number should be within [1, 20]")
 -         self.check_positive_integer(self.days, "Tavily days should be greater than 1")
 - 
 -     def get_input_form(self) -> dict[str, dict]:
 -         return {
 -             "query": {
 -                 "name": "Query",
 -                 "type": "line"
 -             }
 -         }
 - 
 - class TavilySearch(ToolBase, ABC):
 -     component_name = "TavilySearch"
 - 
 -     @timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 12))
 -     def _invoke(self, **kwargs):
 -         if not kwargs.get("query"):
 -             self.set_output("formalized_content", "")
 -             return ""
 - 
 -         self.tavily_client = TavilyClient(api_key=self._param.api_key)
 -         last_e = None
 -         for fld in ["search_depth", "topic", "max_results", "days", "include_answer", "include_raw_content", "include_images", "include_image_descriptions", "include_domains", "exclude_domains"]:
 -             if fld not in kwargs:
 -                 kwargs[fld] = getattr(self._param, fld)
 -         for _ in range(self._param.max_retries+1):
 -             try:
 -                 kwargs["include_images"] = False
 -                 kwargs["include_raw_content"] = False
 -                 res = self.tavily_client.search(**kwargs)
 -                 self._retrieve_chunks(res["results"],
 -                                       get_title=lambda r: r["title"],
 -                                       get_url=lambda r: r["url"],
 -                                       get_content=lambda r: r["raw_content"] if r["raw_content"] else r["content"],
 -                                       get_score=lambda r: r["score"])
 -                 self.set_output("json", res["results"])
 -                 return self.output("formalized_content")
 -             except Exception as e:
 -                 last_e = e
 -                 logging.exception(f"Tavily error: {e}")
 -                 time.sleep(self._param.delay_after_error)
 -         if last_e:
 -             self.set_output("_ERROR", str(last_e))
 -             return f"Tavily error: {last_e}"
 - 
 -         assert False, self.output()
 - 
 -     def thoughts(self) -> str:
 -         return """
 - Keywords: {} 
 - Looking for the most relevant articles.
 -                 """.format(self.get_input().get("query", "-_-!"))
 - 
 - 
 - class TavilyExtractParam(ToolParamBase):
 -     """
 -     Define the Retrieval component parameters.
 -     """
 - 
 -     def __init__(self):
 -         self.meta:ToolMeta = {
 -             "name": "tavily_extract",
 -             "description": "Extract web page content from one or more specified URLs using Tavily Extract.",
 -             "parameters": {
 -                 "urls": {
 -                     "type": "array",
 -                     "description": "The URLs to extract content from.",
 -                     "default": "",
 -                     "items": {
 -                         "type": "string",
 -                         "description": "The URL to extract content from, e.g. www.yahoo.com"
 -                     },
 -                     "required": True
 -                 },
 -                 "extract_depth": {
 -                     "type": "string",
 -                     "description": "The depth of the extraction process. advanced extraction retrieves more data, including tables and embedded content, with higher success but may increase latency.basic extraction costs 1 credit per 5 successful URL extractions, while advanced extraction costs 2 credits per 5 successful URL extractions.",
 -                     "enum": ["basic", "advanced"],
 -                     "default": "basic",
 -                     "required": False,
 -                 },
 -                 "format": {
 -                     "type": "string",
 -                     "description": "The format of the extracted web page content. markdown returns content in markdown format. text returns plain text and may increase latency.",
 -                     "enum": ["markdown", "text"],
 -                     "default": "markdown",
 -                     "required": False,
 -                 }
 -             }
 -         }
 -         super().__init__()
 -         self.api_key = ""
 -         self.extract_depth = "basic" # basic/advanced
 -         self.urls = []
 -         self.format = "markdown"
 -         self.include_images = False
 - 
 -     def check(self):
 -         self.check_valid_value(self.extract_depth, "Tavily extract depth should be in 'basic/advanced'", ["basic", "advanced"])
 -         self.check_valid_value(self.format, "Tavily extract format should be in 'markdown/text'", ["markdown", "text"])
 - 
 -     def get_input_form(self) -> dict[str, dict]:
 -         return {
 -             "urls": {
 -                 "name": "URLs",
 -                 "type": "line"
 -             }
 -         }
 - 
 - class TavilyExtract(ToolBase, ABC):
 -     component_name = "TavilyExtract"
 - 
 -     @timeout(os.environ.get("COMPONENT_EXEC_TIMEOUT", 10*60))
 -     def _invoke(self, **kwargs):
 -         self.tavily_client = TavilyClient(api_key=self._param.api_key)
 -         last_e = None
 -         for fld in ["urls", "extract_depth", "format"]:
 -             if fld not in kwargs:
 -                 kwargs[fld] = getattr(self._param, fld)
 -         if kwargs.get("urls") and isinstance(kwargs["urls"], str):
 -             kwargs["urls"] = kwargs["urls"].split(",")
 -         for _ in range(self._param.max_retries+1):
 -             try:
 -                 kwargs["include_images"] = False
 -                 res = self.tavily_client.extract(**kwargs)
 -                 self.set_output("json", res["results"])
 -                 return self.output("json")
 -             except Exception as e:
 -                 last_e = e
 -                 logging.exception(f"Tavily error: {e}")
 -         if last_e:
 -             self.set_output("_ERROR", str(last_e))
 -             return f"Tavily error: {last_e}"
 - 
 -         assert False, self.output()
 - 
 -     def thoughts(self) -> str:
 -         return "Opened {}—pulling out the main text…".format(self.get_input().get("urls", "-_-!"))
 
 
  |