- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - from abc import ABC
 - from copy import deepcopy
 - 
 - from openai import OpenAI
 - import openai
 - 
 - from rag.nlp import is_english
 - 
 - 
 - class Base(ABC):
 -     def __init__(self, key, model_name):
 -         pass
 - 
 -     def chat(self, system, history, gen_conf):
 -         raise NotImplementedError("Please implement encode method!")
 - 
 - 
 - class GptTurbo(Base):
 -     def __init__(self, key, model_name="gpt-3.5-turbo"):
 -         self.client = OpenAI(api_key=key)
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         if system: history.insert(0, {"role": "system", "content": system})
 -         try:
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 **gen_conf)
 -             ans = response.output.choices[0]['message']['content'].strip()
 -             if response.output.choices[0].get("finish_reason", "") == "length":
 -                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -             return ans, response.usage.completion_tokens
 -         except openai.APIError as e:
 -             return "**ERROR**: "+str(e), 0
 - 
 - 
 - from dashscope import Generation
 - class QWenChat(Base):
 -     def __init__(self, key, model_name=Generation.Models.qwen_turbo):
 -         import dashscope
 -         dashscope.api_key = key
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         from http import HTTPStatus
 -         if system: history.insert(0, {"role": "system", "content": system})
 -         response = Generation.call(
 -             self.model_name,
 -             messages=history,
 -             result_format='message',
 -             **gen_conf
 -         )
 -         ans = ""
 -         tk_count = 0
 -         if response.status_code == HTTPStatus.OK:
 -             ans += response.output.choices[0]['message']['content']
 -             tk_count += response.usage.output_tokens
 -             if response.output.choices[0].get("finish_reason", "") == "length":
 -                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english([ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -             return ans, tk_count
 - 
 -         return "**ERROR**: " + response.message, tk_count
 - 
 - 
 - from zhipuai import ZhipuAI
 - class ZhipuChat(Base):
 -     def __init__(self, key, model_name="glm-3-turbo"):
 -         self.client = ZhipuAI(api_key=key)
 -         self.model_name = model_name
 - 
 -     def chat(self, system, history, gen_conf):
 -         from http import HTTPStatus
 -         if system: history.insert(0, {"role": "system", "content": system})
 -         try:
 -             response = self.client.chat.completions.create(
 -                 self.model_name,
 -                 messages=history,
 -                 **gen_conf
 -             )
 -             ans = response.output.choices[0]['message']['content'].strip()
 -             if response.output.choices[0].get("finish_reason", "") == "length":
 -                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -             return ans, response.usage.completion_tokens
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 
 
  |