| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280 | 
                        - #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import re
 - 
 - from flask import request
 - from flask_login import login_required
 - from api.db.services.dialog_service import DialogService, ConversationService
 - from api.db import LLMType
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.db.services.llm_service import LLMService, LLMBundle
 - from api.settings import access_logger, stat_logger, retrievaler
 - from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
 - from api.utils import get_uuid
 - from api.utils.api_utils import get_json_result
 - from rag.app.resume import forbidden_select_fields4resume
 - from rag.nlp.search import index_name
 - from rag.utils import num_tokens_from_string, encoder, rmSpace
 - 
 - 
 - @manager.route('/set', methods=['POST'])
 - @login_required
 - def set_conversation():
 -     req = request.json
 -     conv_id = req.get("conversation_id")
 -     if conv_id:
 -         del req["conversation_id"]
 -         try:
 -             if not ConversationService.update_by_id(conv_id, req):
 -                 return get_data_error_result(retmsg="Conversation not found!")
 -             e, conv = ConversationService.get_by_id(conv_id)
 -             if not e:
 -                 return get_data_error_result(
 -                     retmsg="Fail to update a conversation!")
 -             conv = conv.to_dict()
 -             return get_json_result(data=conv)
 -         except Exception as e:
 -             return server_error_response(e)
 - 
 -     try:
 -         e, dia = DialogService.get_by_id(req["dialog_id"])
 -         if not e:
 -             return get_data_error_result(retmsg="Dialog not found")
 -         conv = {
 -             "id": get_uuid(),
 -             "dialog_id": req["dialog_id"],
 -             "name": req.get("name", "New conversation"),
 -             "message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
 -         }
 -         ConversationService.save(**conv)
 -         e, conv = ConversationService.get_by_id(conv["id"])
 -         if not e:
 -             return get_data_error_result(retmsg="Fail to new a conversation!")
 -         conv = conv.to_dict()
 -         return get_json_result(data=conv)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/get', methods=['GET'])
 - @login_required
 - def get():
 -     conv_id = request.args["conversation_id"]
 -     try:
 -         e, conv = ConversationService.get_by_id(conv_id)
 -         if not e:
 -             return get_data_error_result(retmsg="Conversation not found!")
 -         conv = conv.to_dict()
 -         return get_json_result(data=conv)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/rm', methods=['POST'])
 - @login_required
 - def rm():
 -     conv_ids = request.json["conversation_ids"]
 -     try:
 -         for cid in conv_ids:
 -             ConversationService.delete_by_id(cid)
 -         return get_json_result(data=True)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - @manager.route('/list', methods=['GET'])
 - @login_required
 - def list_convsersation():
 -     dialog_id = request.args["dialog_id"]
 -     try:
 -         convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
 -         convs = [d.to_dict() for d in convs]
 -         return get_json_result(data=convs)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - def message_fit_in(msg, max_length=4000):
 -     def count():
 -         nonlocal msg
 -         tks_cnts = []
 -         for m in msg: tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
 -         total = 0
 -         for m in tks_cnts: total += m["count"]
 -         return total
 - 
 -     c = count()
 -     if c < max_length: return c, msg
 -     msg = [m for m in msg if m.role in ["system", "user"]]
 -     c = count()
 -     if c < max_length: return c, msg
 -     msg_ = [m for m in msg[:-1] if m.role == "system"]
 -     msg_.append(msg[-1])
 -     msg = msg_
 -     c = count()
 -     if c < max_length: return c, msg
 -     ll = num_tokens_from_string(msg_[0].content)
 -     l = num_tokens_from_string(msg_[-1].content)
 -     if ll / (ll + l) > 0.8:
 -         m = msg_[0].content
 -         m = encoder.decode(encoder.encode(m)[:max_length - l])
 -         msg[0].content = m
 -         return max_length, msg
 - 
 -     m = msg_[1].content
 -     m = encoder.decode(encoder.encode(m)[:max_length - l])
 -     msg[1].content = m
 -     return max_length, msg
 - 
 - 
 - @manager.route('/completion', methods=['POST'])
 - @login_required
 - @validate_request("conversation_id", "messages")
 - def completion():
 -     req = request.json
 -     msg = []
 -     for m in req["messages"]:
 -         if m["role"] == "system": continue
 -         if m["role"] == "assistant" and not msg: continue
 -         msg.append({"role": m["role"], "content": m["content"]})
 -     try:
 -         e, conv = ConversationService.get_by_id(req["conversation_id"])
 -         if not e:
 -             return get_data_error_result(retmsg="Conversation not found!")
 -         conv.message.append(msg[-1])
 -         e, dia = DialogService.get_by_id(conv.dialog_id)
 -         if not e:
 -             return get_data_error_result(retmsg="Dialog not found!")
 -         del req["conversation_id"]
 -         del req["messages"]
 -         ans = chat(dia, msg, **req)
 -         if not conv.reference: conv.reference = []
 -         conv.reference.append(ans["reference"])
 -         conv.message.append({"role": "assistant", "content": ans["answer"]})
 -         ConversationService.update_by_id(conv.id, conv.to_dict())
 -         return get_json_result(data=ans)
 -     except Exception as e:
 -         return server_error_response(e)
 - 
 - 
 - def chat(dialog, messages, **kwargs):
 -     assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
 -     llm = LLMService.query(llm_name=dialog.llm_id)
 -     if not llm:
 -         raise LookupError("LLM(%s) not found" % dialog.llm_id)
 -     llm = llm[0]
 -     questions = [m["content"] for m in messages if m["role"] == "user"]
 -     embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
 -     chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
 - 
 -     field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
 -     ## try to use sql if field mapping is good to go
 -     if field_map:
 -         stat_logger.info("Use SQL to retrieval.")
 -         markdown_tbl, chunks = use_sql("\n".join(questions), field_map, dialog.tenant_id, chat_mdl)
 -         if markdown_tbl:
 -             return {"answer": markdown_tbl, "retrieval": {"chunks": chunks}}
 - 
 -     prompt_config = dialog.prompt_config
 -     for p in prompt_config["parameters"]:
 -         if p["key"] == "knowledge": continue
 -         if p["key"] not in kwargs and not p["optional"]: raise KeyError("Miss parameter: " + p["key"])
 -         if p["key"] not in kwargs:
 -             prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
 - 
 -     for _ in range(len(questions)//2):
 -         questions.append(questions[-1])
 -     kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
 -                                     dialog.similarity_threshold,
 -                                     dialog.vector_similarity_weight, top=1024, aggs=False)
 -     knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
 - 
 -     if not knowledges and prompt_config.get("empty_response"):
 -         return {"answer": prompt_config["empty_response"], "reference": kbinfos}
 - 
 -     kwargs["knowledge"] = "\n".join(knowledges)
 -     gen_conf = dialog.llm_setting
 -     msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
 -     used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
 -     if "max_tokens" in gen_conf:
 -         gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
 -     answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
 - 
 -     if knowledges:
 -         answer = retrievaler.insert_citations(answer,
 -                                           [ck["content_ltks"] for ck in kbinfos["chunks"]],
 -                                           [ck["vector"] for ck in kbinfos["chunks"]],
 -                                           embd_mdl,
 -                                           tkweight=1 - dialog.vector_similarity_weight,
 -                                           vtweight=dialog.vector_similarity_weight)
 -     for c in kbinfos["chunks"]:
 -         if c.get("vector"): del c["vector"]
 -     return {"answer": answer, "reference": kbinfos}
 - 
 - 
 - def use_sql(question, field_map, tenant_id, chat_mdl):
 -     sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。"
 -     user_promt = """
 - 表名:{};
 - 数据库表字段说明如下:
 - {}
 - 
 - 问题如下:
 - {}
 - 请写出SQL,且只要SQL,不要有其他说明及文字。
 - """.format(
 -         index_name(tenant_id),
 -         "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
 -         question
 -     )
 -     sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {"temperature": 0.06})
 -     stat_logger.info(f"“{question}” get SQL: {sql}")
 -     sql = re.sub(r"[\r\n]+", " ", sql.lower())
 -     sql = re.sub(r".*?select ", "select ", sql.lower())
 -     sql = re.sub(r" +", " ", sql)
 -     sql = re.sub(r"([;;]|```).*", "", sql)
 -     if sql[:len("select ")] != "select ":
 -         return None, None
 -     if sql[:len("select *")] != "select *":
 -         sql = "select doc_id,docnm_kwd," + sql[6:]
 -     else:
 -         flds = []
 -         for k in field_map.keys():
 -             if k in forbidden_select_fields4resume:continue
 -             if len(flds) > 11:break
 -             flds.append(k)
 -         sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
 - 
 -     stat_logger.info(f"“{question}” get SQL(refined): {sql}")
 -     tbl = retrievaler.sql_retrieval(sql, format="json")
 -     if not tbl or len(tbl["rows"]) == 0: return None, None
 - 
 -     docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
 -     docnm_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
 -     clmn_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
 - 
 -     # compose markdown table
 -     clmns = "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], f"C{i}")) for i in clmn_idx]) + "|原文"
 -     line = "|".join(["------" for _ in range(len(clmn_idx))]) + "|------"
 -     rows = ["|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
 -     if not docid_idx or not docnm_idx:
 -         access_logger.error("SQL missing field: " + sql)
 -         return "\n".join([clmns, line, "\n".join(rows)]), []
 - 
 -     rows = "\n".join([r + f"##{ii}$$" for ii, r in enumerate(rows)])
 -     docid_idx = list(docid_idx)[0]
 -     docnm_idx = list(docnm_idx)[0]
 -     return "\n".join([clmns, line, rows]), [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]]
 
 
  |