- #
- # Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from collections import Counter
- from enum import auto
- from typing import Annotated, Any
- from uuid import UUID
-
- from flask import Request
- from pydantic import BaseModel, Field, StringConstraints, ValidationError, field_validator
- from pydantic_core import PydanticCustomError
- from strenum import StrEnum
- from werkzeug.exceptions import BadRequest, UnsupportedMediaType
-
- from api.constants import DATASET_NAME_LIMIT
-
-
- def validate_and_parse_json_request(request: Request, validator: type[BaseModel], *, extras: dict[str, Any] | None = None, exclude_unset: bool = False) -> tuple[dict[str, Any] | None, str | None]:
- """
- Validates and parses JSON requests through a multi-stage validation pipeline.
-
- Implements a four-stage validation process:
- 1. Content-Type verification (must be application/json)
- 2. JSON syntax validation
- 3. Payload structure type checking
- 4. Pydantic model validation with error formatting
-
- Args:
- request (Request): Flask request object containing HTTP payload
- validator (type[BaseModel]): Pydantic model class for data validation
- extras (dict[str, Any] | None): Additional fields to merge into payload
- before validation. These fields will be removed from the final output
- exclude_unset (bool): Whether to exclude fields that have not been explicitly set
-
- Returns:
- tuple[Dict[str, Any] | None, str | None]:
- - First element:
- - Validated dictionary on success
- - None on validation failure
- - Second element:
- - None on success
- - Diagnostic error message on failure
-
- Raises:
- UnsupportedMediaType: When Content-Type header is not application/json
- BadRequest: For structural JSON syntax errors
- ValidationError: When payload violates Pydantic schema rules
-
- Examples:
- >>> validate_and_parse_json_request(valid_request, DatasetSchema)
- ({"name": "Dataset1", "format": "csv"}, None)
-
- >>> validate_and_parse_json_request(xml_request, DatasetSchema)
- (None, "Unsupported content type: Expected application/json, got text/xml")
-
- >>> validate_and_parse_json_request(bad_json_request, DatasetSchema)
- (None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding")
-
- Notes:
- 1. Validation Priority:
- - Content-Type verification precedes JSON parsing
- - Structural validation occurs before schema validation
- 2. Extra fields added via `extras` parameter are automatically removed
- from the final output after validation
- """
- try:
- payload = request.get_json() or {}
- except UnsupportedMediaType:
- return None, f"Unsupported content type: Expected application/json, got {request.content_type}"
- except BadRequest:
- return None, "Malformed JSON syntax: Missing commas/brackets or invalid encoding"
-
- if not isinstance(payload, dict):
- return None, f"Invalid request payload: expected object, got {type(payload).__name__}"
-
- try:
- if extras is not None:
- payload.update(extras)
- validated_request = validator(**payload)
- except ValidationError as e:
- return None, format_validation_error_message(e)
-
- parsed_payload = validated_request.model_dump(by_alias=True, exclude_unset=exclude_unset)
-
- if extras is not None:
- for key in list(parsed_payload.keys()):
- if key in extras:
- del parsed_payload[key]
-
- return parsed_payload, None
-
-
- def validate_and_parse_request_args(request: Request, validator: type[BaseModel], *, extras: dict[str, Any] | None = None) -> tuple[dict[str, Any] | None, str | None]:
- """
- Validates and parses request arguments against a Pydantic model.
-
- This function performs a complete request validation workflow:
- 1. Extracts query parameters from the request
- 2. Merges with optional extra values (if provided)
- 3. Validates against the specified Pydantic model
- 4. Cleans the output by removing extra values
- 5. Returns either parsed data or an error message
-
- Args:
- request (Request): Web framework request object containing query parameters
- validator (type[BaseModel]): Pydantic model class for validation
- extras (dict[str, Any] | None): Optional additional values to include in validation
- but exclude from final output. Defaults to None.
-
- Returns:
- tuple[dict[str, Any] | None, str | None]:
- - First element: Validated/parsed arguments as dict if successful, None otherwise
- - Second element: Formatted error message if validation failed, None otherwise
-
- Behavior:
- - Query parameters are merged with extras before validation
- - Extras are automatically removed from the final output
- - All validation errors are formatted into a human-readable string
-
- Raises:
- TypeError: If validator is not a Pydantic BaseModel subclass
-
- Examples:
- Successful validation:
- >>> validate_and_parse_request_args(request, MyValidator)
- ({'param1': 'value'}, None)
-
- Failed validation:
- >>> validate_and_parse_request_args(request, MyValidator)
- (None, "param1: Field required")
-
- With extras:
- >>> validate_and_parse_request_args(request, MyValidator, extras={'internal_id': 123})
- ({'param1': 'value'}, None) # internal_id removed from output
-
- Notes:
- - Uses request.args.to_dict() for Flask-compatible parameter extraction
- - Maintains immutability of original request arguments
- - Preserves type conversion from Pydantic validation
- """
- args = request.args.to_dict(flat=True)
- try:
- if extras is not None:
- args.update(extras)
- validated_args = validator(**args)
- except ValidationError as e:
- return None, format_validation_error_message(e)
-
- parsed_args = validated_args.model_dump()
- if extras is not None:
- for key in list(parsed_args.keys()):
- if key in extras:
- del parsed_args[key]
-
- return parsed_args, None
-
-
- def format_validation_error_message(e: ValidationError) -> str:
- """
- Formats validation errors into a standardized string format.
-
- Processes pydantic ValidationError objects to create human-readable error messages
- containing field locations, error descriptions, and input values.
-
- Args:
- e (ValidationError): The validation error instance containing error details
-
- Returns:
- str: Formatted error messages joined by newlines. Each line contains:
- - Field path (dot-separated)
- - Error message
- - Truncated input value (max 128 chars)
-
- Example:
- >>> try:
- ... UserModel(name=123, email="invalid")
- ... except ValidationError as e:
- ... print(format_validation_error_message(e))
- Field: <name> - Message: <Input should be a valid string> - Value: <123>
- Field: <email> - Message: <value is not a valid email address> - Value: <invalid>
- """
- error_messages = []
-
- for error in e.errors():
- field = ".".join(map(str, error["loc"]))
- msg = error["msg"]
- input_val = error["input"]
- input_str = str(input_val)
-
- if len(input_str) > 128:
- input_str = input_str[:125] + "..."
-
- error_msg = f"Field: <{field}> - Message: <{msg}> - Value: <{input_str}>"
- error_messages.append(error_msg)
-
- return "\n".join(error_messages)
-
-
- def normalize_str(v: Any) -> Any:
- """
- Normalizes string values to a standard format while preserving non-string inputs.
-
- Performs the following transformations when input is a string:
- 1. Trims leading/trailing whitespace (str.strip())
- 2. Converts to lowercase (str.lower())
-
- Non-string inputs are returned unchanged, making this function safe for mixed-type
- processing pipelines.
-
- Args:
- v (Any): Input value to normalize. Accepts any Python object.
-
- Returns:
- Any: Normalized string if input was string-type, original value otherwise.
-
- Behavior Examples:
- String Input: " Admin " → "admin"
- Empty String: " " → "" (empty string)
- Non-String:
- - 123 → 123
- - None → None
- - ["User"] → ["User"]
-
- Typical Use Cases:
- - Standardizing user input
- - Preparing data for case-insensitive comparison
- - Cleaning API parameters
- - Normalizing configuration values
-
- Edge Cases:
- - Unicode whitespace is handled by str.strip()
- - Locale-independent lowercasing (str.lower())
- - Preserves falsy values (0, False, etc.)
-
- Example:
- >>> normalize_str(" ReadOnly ")
- 'readonly'
- >>> normalize_str(42)
- 42
- """
- if isinstance(v, str):
- stripped = v.strip()
- normalized = stripped.lower()
- return normalized
- return v
-
-
- def validate_uuid1_hex(v: Any) -> str:
- """
- Validates and converts input to a UUID version 1 hexadecimal string.
-
- This function performs strict validation and normalization:
- 1. Accepts either UUID objects or UUID-formatted strings
- 2. Verifies the UUID is version 1 (time-based)
- 3. Returns the 32-character hexadecimal representation
-
- Args:
- v (Any): Input value to validate. Can be:
- - UUID object (must be version 1)
- - String in UUID format (e.g. "550e8400-e29b-41d4-a716-446655440000")
-
- Returns:
- str: 32-character lowercase hexadecimal string without hyphens
- Example: "550e8400e29b41d4a716446655440000"
-
- Raises:
- PydanticCustomError: With code "invalid_UUID1_format" when:
- - Input is not a UUID object or valid UUID string
- - UUID version is not 1
- - String doesn't match UUID format
-
- Examples:
- Valid cases:
- >>> validate_uuid1_hex("550e8400-e29b-41d4-a716-446655440000")
- '550e8400e29b41d4a716446655440000'
- >>> validate_uuid1_hex(UUID('550e8400-e29b-41d4-a716-446655440000'))
- '550e8400e29b41d4a716446655440000'
-
- Invalid cases:
- >>> validate_uuid1_hex("not-a-uuid") # raises PydanticCustomError
- >>> validate_uuid1_hex(12345) # raises PydanticCustomError
- >>> validate_uuid1_hex(UUID(int=0)) # v4, raises PydanticCustomError
-
- Notes:
- - Uses Python's built-in UUID parser for format validation
- - Version check prevents accidental use of other UUID versions
- - Hyphens in input strings are automatically removed in output
- """
- try:
- uuid_obj = UUID(v) if isinstance(v, str) else v
- if uuid_obj.version != 1:
- raise PydanticCustomError("invalid_UUID1_format", "Must be a UUID1 format")
- return uuid_obj.hex
- except (AttributeError, ValueError, TypeError):
- raise PydanticCustomError("invalid_UUID1_format", "Invalid UUID1 format")
-
-
- class PermissionEnum(StrEnum):
- me = auto()
- team = auto()
-
-
- class ChunkMethodnEnum(StrEnum):
- naive = auto()
- book = auto()
- email = auto()
- laws = auto()
- manual = auto()
- one = auto()
- paper = auto()
- picture = auto()
- presentation = auto()
- qa = auto()
- table = auto()
- tag = auto()
-
-
- class GraphragMethodEnum(StrEnum):
- light = auto()
- general = auto()
-
-
- class Base(BaseModel):
- class Config:
- extra = "forbid"
-
-
- class RaptorConfig(Base):
- use_raptor: bool = Field(default=False)
- prompt: Annotated[
- str,
- StringConstraints(strip_whitespace=True, min_length=1),
- Field(
- default="Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:\n {cluster_content}\nThe above is the content you need to summarize."
- ),
- ]
- max_token: int = Field(default=256, ge=1, le=2048)
- threshold: float = Field(default=0.1, ge=0.0, le=1.0)
- max_cluster: int = Field(default=64, ge=1, le=1024)
- random_seed: int = Field(default=0, ge=0)
-
-
- class GraphragConfig(Base):
- use_graphrag: bool = Field(default=False)
- entity_types: list[str] = Field(default_factory=lambda: ["organization", "person", "geo", "event", "category"])
- method: GraphragMethodEnum = Field(default=GraphragMethodEnum.light)
- community: bool = Field(default=False)
- resolution: bool = Field(default=False)
-
-
- class ParserConfig(Base):
- auto_keywords: int = Field(default=0, ge=0, le=32)
- auto_questions: int = Field(default=0, ge=0, le=10)
- chunk_token_num: int = Field(default=128, ge=1, le=2048)
- delimiter: str = Field(default=r"\n", min_length=1)
- graphrag: GraphragConfig | None = None
- html4excel: bool = False
- layout_recognize: str = "DeepDOC"
- raptor: RaptorConfig | None = None
- tag_kb_ids: list[str] = Field(default_factory=list)
- topn_tags: int = Field(default=1, ge=1, le=10)
- filename_embd_weight: float | None = Field(default=None, ge=0.0, le=1.0)
- task_page_size: int | None = Field(default=None, ge=1)
- pages: list[list[int]] | None = None
-
-
- class CreateDatasetReq(Base):
- name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=DATASET_NAME_LIMIT), Field(...)]
- avatar: str | None = Field(default=None, max_length=65535)
- description: str | None = Field(default=None, max_length=65535)
- embedding_model: Annotated[str, StringConstraints(strip_whitespace=True, max_length=255), Field(default="", serialization_alias="embd_id")]
- permission: PermissionEnum = Field(default=PermissionEnum.me, min_length=1, max_length=16)
- chunk_method: ChunkMethodnEnum = Field(default=ChunkMethodnEnum.naive, min_length=1, max_length=32, serialization_alias="parser_id")
- parser_config: ParserConfig | None = Field(default=None)
-
- @field_validator("avatar")
- @classmethod
- def validate_avatar_base64(cls, v: str | None) -> str | None:
- """
- Validates Base64-encoded avatar string format and MIME type compliance.
-
- Implements a three-stage validation workflow:
- 1. MIME prefix existence check
- 2. MIME type format validation
- 3. Supported type verification
-
- Args:
- v (str): Raw avatar field value
-
- Returns:
- str: Validated Base64 string
-
- Raises:
- PydanticCustomError: For structural errors in these cases:
- - Missing MIME prefix header
- - Invalid MIME prefix format
- - Unsupported image MIME type
-
- Example:
- ```python
- # Valid case
- CreateDatasetReq(avatar="...")
-
- # Invalid cases
- CreateDatasetReq(avatar="image/jpeg;base64,...") # Missing 'data:' prefix
- CreateDatasetReq(avatar="data:video/mp4;base64,...") # Unsupported MIME type
- ```
- """
- if v is None:
- return v
-
- if "," in v:
- prefix, _ = v.split(",", 1)
- if not prefix.startswith("data:"):
- raise PydanticCustomError("format_invalid", "Invalid MIME prefix format. Must start with 'data:'")
-
- mime_type = prefix[5:].split(";")[0]
- supported_mime_types = ["image/jpeg", "image/png"]
- if mime_type not in supported_mime_types:
- raise PydanticCustomError("format_invalid", "Unsupported MIME type. Allowed: {supported_mime_types}", {"supported_mime_types": supported_mime_types})
-
- return v
- else:
- raise PydanticCustomError("format_invalid", "Missing MIME prefix. Expected format: data:<mime>;base64,<data>")
-
- @field_validator("embedding_model", mode="after")
- @classmethod
- def validate_embedding_model(cls, v: str) -> str:
- """
- Validates embedding model identifier format compliance.
-
- Validation pipeline:
- 1. Structural format verification
- 2. Component non-empty check
- 3. Value normalization
-
- Args:
- v (str): Raw model identifier
-
- Returns:
- str: Validated <model_name>@<provider> format
-
- Raises:
- PydanticCustomError: For these violations:
- - Missing @ separator
- - Empty model_name/provider
- - Invalid component structure
-
- Examples:
- Valid: "text-embedding-3-large@openai"
- Invalid: "invalid_model" (no @)
- Invalid: "@openai" (empty model_name)
- Invalid: "text-embedding-3-large@" (empty provider)
- """
- if "@" not in v:
- raise PydanticCustomError("format_invalid", "Embedding model identifier must follow <model_name>@<provider> format")
-
- components = v.split("@", 1)
- if len(components) != 2 or not all(components):
- raise PydanticCustomError("format_invalid", "Both model_name and provider must be non-empty strings")
-
- model_name, provider = components
- if not model_name.strip() or not provider.strip():
- raise PydanticCustomError("format_invalid", "Model name and provider cannot be whitespace-only strings")
- return v
-
- @field_validator("permission", mode="before")
- @classmethod
- def normalize_permission(cls, v: Any) -> Any:
- return normalize_str(v)
-
- @field_validator("parser_config", mode="before")
- @classmethod
- def normalize_empty_parser_config(cls, v: Any) -> Any:
- """
- Normalizes empty parser configuration by converting empty dictionaries to None.
-
- This validator ensures consistent handling of empty parser configurations across
- the application by converting empty dicts to None values.
-
- Args:
- v (Any): Raw input value for the parser config field
-
- Returns:
- Any: Returns None if input is an empty dict, otherwise returns the original value
-
- Example:
- >>> normalize_empty_parser_config({})
- None
-
- >>> normalize_empty_parser_config({"key": "value"})
- {"key": "value"}
- """
- if v == {}:
- return None
- return v
-
- @field_validator("parser_config", mode="after")
- @classmethod
- def validate_parser_config_json_length(cls, v: ParserConfig | None) -> ParserConfig | None:
- """
- Validates serialized JSON length constraints for parser configuration.
-
- Implements a two-stage validation workflow:
- 1. Null check - bypass validation for empty configurations
- 2. Model serialization - convert Pydantic model to JSON string
- 3. Size verification - enforce maximum allowed payload size
-
- Args:
- v (ParserConfig | None): Raw parser configuration object
-
- Returns:
- ParserConfig | None: Validated configuration object
-
- Raises:
- PydanticCustomError: When serialized JSON exceeds 65,535 characters
- """
- if v is None:
- return None
-
- if (json_str := v.model_dump_json()) and len(json_str) > 65535:
- raise PydanticCustomError("string_too_long", "Parser config exceeds size limit (max 65,535 characters). Current size: {actual}", {"actual": len(json_str)})
- return v
-
-
- class UpdateDatasetReq(CreateDatasetReq):
- dataset_id: str = Field(...)
- name: Annotated[str, StringConstraints(strip_whitespace=True, min_length=1, max_length=DATASET_NAME_LIMIT), Field(default="")]
- pagerank: int = Field(default=0, ge=0, le=100)
-
- @field_validator("dataset_id", mode="before")
- @classmethod
- def validate_dataset_id(cls, v: Any) -> str:
- return validate_uuid1_hex(v)
-
-
- class DeleteReq(Base):
- ids: list[str] | None = Field(...)
-
- @field_validator("ids", mode="after")
- @classmethod
- def validate_ids(cls, v_list: list[str] | None) -> list[str] | None:
- """
- Validates and normalizes a list of UUID strings with None handling.
-
- This post-processing validator performs:
- 1. None input handling (pass-through)
- 2. UUID version 1 validation for each list item
- 3. Duplicate value detection
- 4. Returns normalized UUID hex strings or None
-
- Args:
- v_list (list[str] | None): Input list that has passed initial validation.
- Either a list of UUID strings or None.
-
- Returns:
- list[str] | None:
- - None if input was None
- - List of normalized UUID hex strings otherwise:
- * 32-character lowercase
- * Valid UUID version 1
- * Unique within list
-
- Raises:
- PydanticCustomError: With structured error details when:
- - "invalid_UUID1_format": Any string fails UUIDv1 validation
- - "duplicate_uuids": If duplicate IDs are detected
-
- Validation Rules:
- - None input returns None
- - Empty list returns empty list
- - All non-None items must be valid UUIDv1
- - No duplicates permitted
- - Original order preserved
-
- Examples:
- Valid cases:
- >>> validate_ids(None)
- None
- >>> validate_ids([])
- []
- >>> validate_ids(["550e8400-e29b-41d4-a716-446655440000"])
- ["550e8400e29b41d4a716446655440000"]
-
- Invalid cases:
- >>> validate_ids(["invalid"])
- # raises PydanticCustomError(invalid_UUID1_format)
- >>> validate_ids(["550e...", "550e..."])
- # raises PydanticCustomError(duplicate_uuids)
-
- Security Notes:
- - Validates UUID version to prevent version spoofing
- - Duplicate check prevents data injection
- - None handling maintains pipeline integrity
- """
- if v_list is None:
- return None
-
- ids_list = []
- for v in v_list:
- try:
- ids_list.append(validate_uuid1_hex(v))
- except PydanticCustomError as e:
- raise e
-
- duplicates = [item for item, count in Counter(ids_list).items() if count > 1]
- if duplicates:
- duplicates_str = ", ".join(duplicates)
- raise PydanticCustomError("duplicate_uuids", "Duplicate ids: '{duplicate_ids}'", {"duplicate_ids": duplicates_str})
-
- return ids_list
-
-
- class DeleteDatasetReq(DeleteReq): ...
-
-
- class OrderByEnum(StrEnum):
- create_time = auto()
- update_time = auto()
-
-
- class BaseListReq(Base):
- id: str | None = None
- name: str | None = None
- page: int = Field(default=1, ge=1)
- page_size: int = Field(default=30, ge=1)
- orderby: OrderByEnum = Field(default=OrderByEnum.create_time)
- desc: bool = Field(default=True)
-
- @field_validator("id", mode="before")
- @classmethod
- def validate_id(cls, v: Any) -> str:
- return validate_uuid1_hex(v)
-
- @field_validator("orderby", mode="before")
- @classmethod
- def normalize_orderby(cls, v: Any) -> Any:
- return normalize_str(v)
-
-
- class ListDatasetReq(BaseListReq): ...
|