- #
 - #  Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - 
 - import os
 - import sys
 - sys.path.insert(
 -     0,
 -     os.path.abspath(
 -         os.path.join(
 -             os.path.dirname(
 -                 os.path.abspath(__file__)),
 -             '../../')))
 - 
 - from deepdoc.vision.seeit import draw_box
 - from deepdoc.vision import OCR, init_in_out
 - import argparse
 - import numpy as np
 - import trio
 - 
 - # os.environ['CUDA_VISIBLE_DEVICES'] = '0,2' #2 gpus, uncontinuous
 - os.environ['CUDA_VISIBLE_DEVICES'] = '0' #1 gpu
 - # os.environ['CUDA_VISIBLE_DEVICES'] = '' #cpu
 - 
 - 
 - def main(args):
 -     import torch.cuda
 - 
 -     cuda_devices = torch.cuda.device_count()
 -     limiter = [trio.CapacityLimiter(1) for _ in range(cuda_devices)] if cuda_devices > 1 else None
 -     ocr = OCR()
 -     images, outputs = init_in_out(args)
 - 
 -     def __ocr(i, id, img):
 -         print("Task {} start".format(i))
 -         bxs = ocr(np.array(img), id)
 -         bxs = [(line[0], line[1][0]) for line in bxs]
 -         bxs = [{
 -             "text": t,
 -             "bbox": [b[0][0], b[0][1], b[1][0], b[-1][1]],
 -             "type": "ocr",
 -             "score": 1} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]]
 -         img = draw_box(images[i], bxs, ["ocr"], 1.)
 -         img.save(outputs[i], quality=95)
 -         with open(outputs[i] + ".txt", "w+", encoding='utf-8') as f:
 -             f.write("\n".join([o["text"] for o in bxs]))
 - 
 -         print("Task {} done".format(i))
 - 
 -     async def __ocr_thread(i, id, img, limiter = None):
 -         if limiter:
 -             async with limiter:
 -                 print("Task {} use device {}".format(i, id))
 -                 await trio.to_thread.run_sync(lambda: __ocr(i, id, img))
 -         else:
 -             __ocr(i, id, img)
 - 
 -     async def __ocr_launcher():
 -         if cuda_devices > 1:
 -             async with trio.open_nursery() as nursery:
 -                 for i, img in enumerate(images):
 -                     nursery.start_soon(__ocr_thread, i, i % cuda_devices, img, limiter[i % cuda_devices])
 -                     await trio.sleep(0.1)
 -         else:
 -             for i, img in enumerate(images):
 -                 await __ocr_thread(i, 0, img)
 - 
 -     trio.run(__ocr_launcher)
 - 
 -     print("OCR tasks are all done")
 - 
 - 
 - if __name__ == "__main__":
 -     parser = argparse.ArgumentParser()
 -     parser.add_argument('--inputs',
 -                         help="Directory where to store images or PDFs, or a file path to a single image or PDF",
 -                         required=True)
 -     parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './ocr_outputs'",
 -                         default="./ocr_outputs")
 -     args = parser.parse_args()
 -     main(args)
 
 
  |