- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import logging
 - import base64
 - import json
 - import os
 - import time
 - import uuid
 - from copy import deepcopy
 - 
 - from api.db import LLMType, UserTenantRole
 - from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM, TenantLLM
 - from api.db.services import UserService
 - from api.db.services.canvas_service import CanvasTemplateService
 - from api.db.services.document_service import DocumentService
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
 - from api.db.services.user_service import TenantService, UserTenantService
 - from api import settings
 - from api.utils.file_utils import get_project_base_directory
 - 
 - 
 - def encode_to_base64(input_string):
 -     base64_encoded = base64.b64encode(input_string.encode('utf-8'))
 -     return base64_encoded.decode('utf-8')
 - 
 - 
 - def init_superuser():
 -     user_info = {
 -         "id": uuid.uuid1().hex,
 -         "password": encode_to_base64("admin"),
 -         "nickname": "admin",
 -         "is_superuser": True,
 -         "email": "admin@ragflow.io",
 -         "creator": "system",
 -         "status": "1",
 -     }
 -     tenant = {
 -         "id": user_info["id"],
 -         "name": user_info["nickname"] + "‘s Kingdom",
 -         "llm_id": settings.CHAT_MDL,
 -         "embd_id": settings.EMBEDDING_MDL,
 -         "asr_id": settings.ASR_MDL,
 -         "parser_ids": settings.PARSERS,
 -         "img2txt_id": settings.IMAGE2TEXT_MDL
 -     }
 -     usr_tenant = {
 -         "tenant_id": user_info["id"],
 -         "user_id": user_info["id"],
 -         "invited_by": user_info["id"],
 -         "role": UserTenantRole.OWNER
 -     }
 -     tenant_llm = []
 -     for llm in LLMService.query(fid=settings.LLM_FACTORY):
 -         tenant_llm.append(
 -             {"tenant_id": user_info["id"], "llm_factory": settings.LLM_FACTORY, "llm_name": llm.llm_name,
 -              "model_type": llm.model_type,
 -              "api_key": settings.API_KEY, "api_base": settings.LLM_BASE_URL})
 - 
 -     if not UserService.save(**user_info):
 -         logging.error("can't init admin.")
 -         return
 -     TenantService.insert(**tenant)
 -     UserTenantService.insert(**usr_tenant)
 -     TenantLLMService.insert_many(tenant_llm)
 -     logging.info(
 -         "Super user initialized. email: admin@ragflow.io, password: admin. Changing the password after login is strongly recommended.")
 - 
 -     chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
 -     msg = chat_mdl.chat(system="", history=[
 -         {"role": "user", "content": "Hello!"}], gen_conf={})
 -     if msg.find("ERROR: ") == 0:
 -         logging.error(
 -             "'{}' dosen't work. {}".format(
 -                 tenant["llm_id"],
 -                 msg))
 -     embd_mdl = LLMBundle(tenant["id"], LLMType.EMBEDDING, tenant["embd_id"])
 -     v, c = embd_mdl.encode(["Hello!"])
 -     if c == 0:
 -         logging.error(
 -             "'{}' dosen't work!".format(
 -                 tenant["embd_id"]))
 - 
 - 
 - def init_llm_factory():
 -     try:
 -         LLMService.filter_delete([(LLM.fid == "MiniMax" or LLM.fid == "Minimax")])
 -         LLMService.filter_delete([(LLM.fid == "cohere")])
 -         LLMFactoriesService.filter_delete([LLMFactories.name == "cohere"])
 -     except Exception:
 -         pass
 - 
 -     factory_llm_infos = settings.FACTORY_LLM_INFOS    
 -     for factory_llm_info in factory_llm_infos:
 -         info = deepcopy(factory_llm_info)
 -         llm_infos = info.pop("llm")
 -         try:
 -             LLMFactoriesService.save(**info)
 -         except Exception:
 -             pass
 -         LLMService.filter_delete([LLM.fid == factory_llm_info["name"]])
 -         for llm_info in llm_infos:
 -             llm_info["fid"] = factory_llm_info["name"]
 -             try:
 -                 LLMService.save(**llm_info)
 -             except Exception:
 -                 pass
 - 
 -     LLMFactoriesService.filter_delete([(LLMFactories.name == "Local") | (LLMFactories.name == "novita.ai")])
 -     LLMService.filter_delete([LLM.fid == "Local"])
 -     LLMService.filter_delete([LLM.llm_name == "qwen-vl-max"])
 -     LLMService.filter_delete([LLM.fid == "Moonshot", LLM.llm_name == "flag-embedding"])
 -     TenantLLMService.filter_delete([TenantLLM.llm_factory == "Moonshot", TenantLLM.llm_name == "flag-embedding"])
 -     LLMFactoriesService.filter_delete([LLMFactoriesService.model.name == "QAnything"])
 -     LLMService.filter_delete([LLMService.model.fid == "QAnything"])
 -     TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
 -     TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "cohere"], {"llm_factory": "Cohere"})
 -     TenantService.filter_update([1 == 1], {
 -         "parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,email:Email,tag:Tag"})
 -     ## insert openai two embedding models to the current openai user.
 -     # print("Start to insert 2 OpenAI embedding models...")
 -     tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
 -     for tid in tenant_ids:
 -         for row in TenantLLMService.query(llm_factory="OpenAI", tenant_id=tid):
 -             row = row.to_dict()
 -             row["model_type"] = LLMType.EMBEDDING.value
 -             row["llm_name"] = "text-embedding-3-small"
 -             row["used_tokens"] = 0
 -             try:
 -                 TenantLLMService.save(**row)
 -                 row = deepcopy(row)
 -                 row["llm_name"] = "text-embedding-3-large"
 -                 TenantLLMService.save(**row)
 -             except Exception:
 -                 pass
 -             break
 -     for kb_id in KnowledgebaseService.get_all_ids():
 -         KnowledgebaseService.update_document_number_in_init(kb_id=kb_id, doc_num=DocumentService.get_kb_doc_count(kb_id))
 - 
 - 
 - 
 - def add_graph_templates():
 -     dir = os.path.join(get_project_base_directory(), "agent", "templates")
 -     for fnm in os.listdir(dir):
 -         try:
 -             cnvs = json.load(open(os.path.join(dir, fnm), "r",encoding="utf-8"))
 -             try:
 -                 CanvasTemplateService.save(**cnvs)
 -             except Exception:
 -                 CanvasTemplateService.update_by_id(cnvs["id"], cnvs)
 -         except Exception:
 -             logging.exception("Add graph templates error: ")
 - 
 - 
 - def init_web_data():
 -     start_time = time.time()
 - 
 -     init_llm_factory()
 -     # if not UserService.get_all().count():
 -     #    init_superuser()
 - 
 -     add_graph_templates()
 -     logging.info("init web data success:{}".format(time.time() - start_time))
 - 
 - 
 - if __name__ == '__main__':
 -     init_web_db()
 -     init_web_data()
 
 
  |