| 
                        123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 | 
                        - #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - 
 - import argparse
 - import pickle
 - import random
 - import time
 - from copy import deepcopy
 - from multiprocessing.connection import Listener
 - from threading import Thread
 - from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
 - 
 - 
 - def torch_gc():
 -     try:
 -         import torch
 -         if torch.cuda.is_available():
 -             # with torch.cuda.device(DEVICE):
 -             torch.cuda.empty_cache()
 -             torch.cuda.ipc_collect()
 -         elif torch.backends.mps.is_available():
 -             try:
 -                 from torch.mps import empty_cache
 -                 empty_cache()
 -             except Exception as e:
 -                 pass
 -     except Exception:
 -         pass
 - 
 - 
 - class RPCHandler:
 -     def __init__(self):
 -         self._functions = {}
 - 
 -     def register_function(self, func):
 -         self._functions[func.__name__] = func
 - 
 -     def handle_connection(self, connection):
 -         try:
 -             while True:
 -                 # Receive a message
 -                 func_name, args, kwargs = pickle.loads(connection.recv())
 -                 # Run the RPC and send a response
 -                 try:
 -                     r = self._functions[func_name](*args, **kwargs)
 -                     connection.send(pickle.dumps(r))
 -                 except Exception as e:
 -                     connection.send(pickle.dumps(e))
 -         except EOFError:
 -             pass
 - 
 - 
 - def rpc_server(hdlr, address, authkey):
 -     sock = Listener(address, authkey=authkey)
 -     while True:
 -         try:
 -             client = sock.accept()
 -             t = Thread(target=hdlr.handle_connection, args=(client,))
 -             t.daemon = True
 -             t.start()
 -         except Exception as e:
 -             print("【EXCEPTION】:", str(e))
 - 
 - 
 - models = []
 - tokenizer = None
 - 
 - 
 - def chat(messages, gen_conf):
 -     global tokenizer
 -     model = Model()
 -     try:
 -         torch_gc()
 -         conf = {
 -             "max_new_tokens": int(
 -                 gen_conf.get(
 -                     "max_tokens", 256)), "temperature": float(
 -                 gen_conf.get(
 -                     "temperature", 0.1))}
 -         print(messages, conf)
 -         text = tokenizer.apply_chat_template(
 -             messages,
 -             tokenize=False,
 -             add_generation_prompt=True
 -         )
 -         model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
 - 
 -         generated_ids = model.generate(
 -             model_inputs.input_ids,
 -             **conf
 -         )
 -         generated_ids = [
 -             output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
 -         ]
 - 
 -         return tokenizer.batch_decode(
 -             generated_ids, skip_special_tokens=True)[0]
 -     except Exception as e:
 -         return str(e)
 - 
 - 
 - def chat_streamly(messages, gen_conf):
 -     global tokenizer
 -     model = Model()
 -     try:
 -         torch_gc()
 -         conf = deepcopy(gen_conf)
 -         print(messages, conf)
 -         text = tokenizer.apply_chat_template(
 -             messages,
 -             tokenize=False,
 -             add_generation_prompt=True
 -         )
 -         model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
 -         streamer = TextStreamer(tokenizer)
 -         conf["inputs"] = model_inputs.input_ids
 -         conf["streamer"] = streamer
 -         conf["max_new_tokens"] = conf["max_tokens"]
 -         del conf["max_tokens"]
 -         thread = Thread(target=model.generate, kwargs=conf)
 -         thread.start()
 -         for _, new_text in enumerate(streamer):
 -             yield new_text
 -     except Exception as e:
 -         yield "**ERROR**: " + str(e)
 - 
 - 
 - def Model():
 -     global models
 -     random.seed(time.time())
 -     return random.choice(models)
 - 
 - 
 - if __name__ == "__main__":
 -     parser = argparse.ArgumentParser()
 -     parser.add_argument("--model_name", type=str, help="Model name")
 -     parser.add_argument(
 -         "--port",
 -         default=7860,
 -         type=int,
 -         help="RPC serving port")
 -     args = parser.parse_args()
 - 
 -     handler = RPCHandler()
 -     handler.register_function(chat)
 -     handler.register_function(chat_streamly)
 - 
 -     models = []
 -     for _ in range(1):
 -         m = AutoModelForCausalLM.from_pretrained(args.model_name,
 -                                                  device_map="auto",
 -                                                  torch_dtype='auto')
 -         models.append(m)
 -     tokenizer = AutoTokenizer.from_pretrained(args.model_name)
 - 
 -     # Run the server
 -     rpc_server(handler, ('0.0.0.0', args.port),
 -                authkey=b'infiniflow-token4kevinhu')
 
 
  |