- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import pathlib
 - import datetime
 - 
 - from api.db.services.dialog_service import keyword_extraction
 - from rag.app.qa import rmPrefix, beAdoc
 - from rag.nlp import rag_tokenizer
 - from api.db import LLMType, ParserType
 - from api.db.services.llm_service import TenantLLMService
 - from api.settings import kg_retrievaler
 - import hashlib
 - import re
 - from api.utils.api_utils import token_required
 - from api.db.db_models import Task
 - from api.db.services.task_service import TaskService, queue_tasks
 - from api.utils.api_utils import server_error_response
 - from api.utils.api_utils import get_result, get_error_data_result
 - from io import BytesIO
 - from elasticsearch_dsl import Q
 - from flask import request, send_file
 - from api.db import FileSource, TaskStatus, FileType
 - from api.db.db_models import File
 - from api.db.services.document_service import DocumentService
 - from api.db.services.file2document_service import File2DocumentService
 - from api.db.services.file_service import FileService
 - from api.db.services.knowledgebase_service import KnowledgebaseService
 - from api.settings import RetCode, retrievaler
 - from api.utils.api_utils import construct_json_result,get_parser_config
 - from rag.nlp import search
 - from rag.utils import rmSpace
 - from rag.utils.es_conn import ELASTICSEARCH
 - from rag.utils.storage_factory import STORAGE_IMPL
 - import os
 - 
 - MAXIMUM_OF_UPLOADING_FILES = 256
 - 
 - MAXIMUM_OF_UPLOADING_FILES = 256
 - 
 - MAXIMUM_OF_UPLOADING_FILES = 256
 - 
 - MAXIMUM_OF_UPLOADING_FILES = 256
 - 
 - 
 - @manager.route('/datasets/<dataset_id>/documents', methods=['POST'])
 - @token_required
 - def upload(dataset_id, tenant_id):
 -     if 'file' not in request.files:
 -         return get_error_data_result(
 -             retmsg='No file part!', retcode=RetCode.ARGUMENT_ERROR)
 -     file_objs = request.files.getlist('file')
 -     for file_obj in file_objs:
 -         if file_obj.filename == '':
 -             return get_result(
 -                 retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
 -     # total size
 -     total_size = 0
 -     for file_obj in file_objs:
 -         file_obj.seek(0, os.SEEK_END)
 -         total_size += file_obj.tell()
 -         file_obj.seek(0)
 -     MAX_TOTAL_FILE_SIZE=10*1024*1024
 -     if total_size > MAX_TOTAL_FILE_SIZE:
 -         return get_result(
 -             retmsg=f'Total file size exceeds 10MB limit! ({total_size / (1024 * 1024):.2f} MB)',
 -             retcode=RetCode.ARGUMENT_ERROR)
 -     e, kb = KnowledgebaseService.get_by_id(dataset_id)
 -     if not e:
 -         raise LookupError(f"Can't find the dataset with ID {dataset_id}!")
 -     err, files= FileService.upload_document(kb, file_objs, tenant_id)
 -     if err:
 -         return get_result(
 -             retmsg="\n".join(err), retcode=RetCode.SERVER_ERROR)
 -     # rename key's name
 -     renamed_doc_list = []
 -     for file in files:
 -         doc = file[0]
 -         key_mapping = {
 -             "chunk_num": "chunk_count",
 -             "kb_id": "dataset_id",
 -             "token_num": "token_count",
 -             "parser_id": "chunk_method"
 -         }
 -         renamed_doc = {}
 -         for key, value in doc.items():
 -             new_key = key_mapping.get(key, key)
 -             renamed_doc[new_key] = value
 -         renamed_doc["run"] = "UNSTART"
 -         renamed_doc_list.append(renamed_doc)
 -     return get_result(data=renamed_doc_list)
 - 
 - 
 - @manager.route('/datasets/<dataset_id>/documents/<document_id>', methods=['PUT'])
 - @token_required
 - def update_doc(tenant_id, dataset_id, document_id):
 -     req = request.json
 -     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 -         return get_error_data_result(retmsg="You don't own the dataset.")
 -     doc = DocumentService.query(kb_id=dataset_id, id=document_id)
 -     if not doc:
 -         return get_error_data_result(retmsg="The dataset doesn't own the document.")
 -     doc = doc[0]
 -     if "chunk_count" in req:
 -         if req["chunk_count"] != doc.chunk_num:
 -             return get_error_data_result(retmsg="Can't change `chunk_count`.")
 -     if "token_count" in req:
 -         if req["token_count"] != doc.token_num:
 -             return get_error_data_result(retmsg="Can't change `token_count`.")
 -     if "progress" in req:
 -         if req['progress'] != doc.progress:
 -             return get_error_data_result(retmsg="Can't change `progress`.")
 - 
 -     if "name" in req and req["name"] != doc.name:
 -         if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(doc.name.lower()).suffix:
 -             return get_result(retmsg="The extension of file can't be changed", retcode=RetCode.ARGUMENT_ERROR)
 -         for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
 -             if d.name == req["name"]:
 -                 return get_error_data_result(
 -                     retmsg="Duplicated document name in the same dataset.")
 -         if not DocumentService.update_by_id(
 -                 document_id, {"name": req["name"]}):
 -             return get_error_data_result(
 -                 retmsg="Database error (Document rename)!")
 - 
 -         informs = File2DocumentService.get_by_document_id(document_id)
 -         if informs:
 -             e, file = FileService.get_by_id(informs[0].file_id)
 -             FileService.update_by_id(file.id, {"name": req["name"]})
 -     if "parser_config" in req:
 -         DocumentService.update_parser_config(doc.id, req["parser_config"])
 -     if "chunk_method" in req:
 -         valid_chunk_method = {"naive","manual","qa","table","paper","book","laws","presentation","picture","one","knowledge_graph","email"}
 -         if req.get("chunk_method") not in valid_chunk_method:
 -             return get_error_data_result(f"`chunk_method` {req['chunk_method']} doesn't exist")
 -         if doc.parser_id.lower() == req["chunk_method"].lower():
 -                 return get_result()
 - 
 -         if doc.type == FileType.VISUAL or re.search(
 -                 r"\.(ppt|pptx|pages)$", doc.name):
 -             return get_error_data_result(retmsg="Not supported yet!")
 - 
 -         e = DocumentService.update_by_id(doc.id,
 -                                          {"parser_id": req["chunk_method"], "progress": 0, "progress_msg": "",
 -                                           "run": TaskStatus.UNSTART.value})
 -         if not e:
 -             return get_error_data_result(retmsg="Document not found!")
 -         req["parser_config"] = get_parser_config(req["chunk_method"], req.get("parser_config"))
 -         if doc.token_num > 0:
 -             e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1,
 -                                                     doc.process_duation * -1)
 -             if not e:
 -                 return get_error_data_result(retmsg="Document not found!")
 -             ELASTICSEARCH.deleteByQuery(
 -                 Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
 - 
 -     return get_result()
 - 
 - 
 - @manager.route('/datasets/<dataset_id>/documents/<document_id>', methods=['GET'])
 - @token_required
 - def download(tenant_id, dataset_id, document_id):
 -     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 -         return get_error_data_result(retmsg=f'You do not own the dataset {dataset_id}.')
 -     doc = DocumentService.query(kb_id=dataset_id, id=document_id)
 -     if not doc:
 -         return get_error_data_result(retmsg=f'The dataset not own the document {document_id}.')
 -     # The process of downloading
 -     doc_id, doc_location = File2DocumentService.get_storage_address(doc_id=document_id)  # minio address
 -     file_stream = STORAGE_IMPL.get(doc_id, doc_location)
 -     if not file_stream:
 -         return construct_json_result(message="This file is empty.", code=RetCode.DATA_ERROR)
 -     file = BytesIO(file_stream)
 -     # Use send_file with a proper filename and MIME type
 -     return send_file(
 -         file,
 -         as_attachment=True,
 -         download_name=doc[0].name,
 -         mimetype='application/octet-stream'  # Set a default MIME type
 -     )
 - 
 - 
 - @manager.route('/datasets/<dataset_id>/documents', methods=['GET'])
 - @token_required
 - def list_docs(dataset_id, tenant_id):
 -     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 -         return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}. ")
 -     id = request.args.get("id")
 -     if not DocumentService.query(id=id,kb_id=dataset_id):
 -         return get_error_data_result(retmsg=f"You don't own the document {id}.")
 -     offset = int(request.args.get("offset", 1))
 -     keywords = request.args.get("keywords","")
 -     limit = int(request.args.get("limit", 1024))
 -     orderby = request.args.get("orderby", "create_time")
 -     if request.args.get("desc") == "False":
 -         desc = False
 -     else:
 -         desc = True
 -     docs, tol = DocumentService.get_list(dataset_id, offset, limit, orderby, desc, keywords, id)
 - 
 -     # rename key's name
 -     renamed_doc_list = []
 -     for doc in docs:
 -         key_mapping = {
 -             "chunk_num": "chunk_count",
 -             "kb_id": "dataset_id",
 -             "token_num": "token_count",
 -             "parser_id": "chunk_method"
 -         }
 -         run_mapping = {
 -          "0" :"UNSTART",
 -          "1":"RUNNING",
 -          "2":"CANCEL",
 -          "3":"DONE",
 -          "4":"FAIL"
 -         }
 -         renamed_doc = {}
 -         for key, value in doc.items():
 -             if key =="run":
 -                 renamed_doc["run"]=run_mapping.get(str(value))
 -             new_key = key_mapping.get(key, key)
 -             renamed_doc[new_key] = value
 -         renamed_doc_list.append(renamed_doc)
 -     return get_result(data={"total": tol, "docs": renamed_doc_list})
 - 
 - 
 - @manager.route('/datasets/<dataset_id>/documents', methods=['DELETE'])
 - @token_required
 - def delete(tenant_id,dataset_id):
 -     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 -         return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}. ")
 -     req = request.json
 -     if not req:
 -         doc_ids=None
 -     else:
 -         doc_ids=req.get("ids")
 -     if not doc_ids:
 -         doc_list = []
 -         docs=DocumentService.query(kb_id=dataset_id)
 -         for doc in docs:
 -             doc_list.append(doc.id)
 -     else:
 -         doc_list=doc_ids
 -     root_folder = FileService.get_root_folder(tenant_id)
 -     pf_id = root_folder["id"]
 -     FileService.init_knowledgebase_docs(pf_id, tenant_id)
 -     errors = ""
 -     for doc_id in doc_list:
 -         try:
 -             e, doc = DocumentService.get_by_id(doc_id)
 -             if not e:
 -                 return get_error_data_result(retmsg="Document not found!")
 -             tenant_id = DocumentService.get_tenant_id(doc_id)
 -             if not tenant_id:
 -                 return get_error_data_result(retmsg="Tenant not found!")
 - 
 -             b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
 - 
 -             if not DocumentService.remove_document(doc, tenant_id):
 -                 return get_error_data_result(
 -                     retmsg="Database error (Document removal)!")
 - 
 -             f2d = File2DocumentService.get_by_document_id(doc_id)
 -             FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
 -             File2DocumentService.delete_by_document_id(doc_id)
 - 
 -             STORAGE_IMPL.rm(b, n)
 -         except Exception as e:
 -             errors += str(e)
 - 
 -     if errors:
 -         return get_result(retmsg=errors, retcode=RetCode.SERVER_ERROR)
 - 
 -     return get_result()
 - 
 - 
 - @manager.route('/datasets/<dataset_id>/chunks', methods=['POST'])
 - @token_required
 - def parse(tenant_id,dataset_id):
 -     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 -         return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
 -     req = request.json
 -     if not req.get("document_ids"):
 -         return get_error_data_result("`document_ids` is required")
 -     for id in req["document_ids"]:
 -         doc = DocumentService.query(id=id,kb_id=dataset_id)
 -         if not doc:
 -             return get_error_data_result(retmsg=f"You don't own the document {id}.")
 -         if doc[0].progress != 0.0:
 -             return get_error_data_result("Can't stop parsing document with progress at 0 or 100")
 -         info = {"run": "1", "progress": 0}
 -         info["progress_msg"] = ""
 -         info["chunk_num"] = 0
 -         info["token_num"] = 0
 -         DocumentService.update_by_id(id, info)
 -         # if str(req["run"]) == TaskStatus.CANCEL.value:
 -         ELASTICSEARCH.deleteByQuery(
 -             Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
 -         TaskService.filter_delete([Task.doc_id == id])
 -         e, doc = DocumentService.get_by_id(id)
 -         doc = doc.to_dict()
 -         doc["tenant_id"] = tenant_id
 -         bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
 -         queue_tasks(doc, bucket, name)
 -     return get_result()
 - 
 - @manager.route('/datasets/<dataset_id>/chunks', methods=['DELETE'])
 - @token_required
 - def stop_parsing(tenant_id,dataset_id):
 -     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 -         return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
 -     req = request.json
 -     if not req.get("document_ids"):
 -         return get_error_data_result("`document_ids` is required")
 -     for id in req["document_ids"]:
 -         doc = DocumentService.query(id=id, kb_id=dataset_id)
 -         if not doc:
 -             return get_error_data_result(retmsg=f"You don't own the document {id}.")
 -         if doc[0].progress == 100.0 or doc[0].progress == 0.0:
 -             return get_error_data_result("Can't stop parsing document with progress at 0 or 100")
 -         info = {"run": "2", "progress": 0}
 -         DocumentService.update_by_id(id, info)
 -         # if str(req["run"]) == TaskStatus.CANCEL.value:
 -         tenant_id = DocumentService.get_tenant_id(id)
 -         ELASTICSEARCH.deleteByQuery(
 -             Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
 -     return get_result()
 - 
 - 
 - @manager.route('/datasets/<dataset_id>/documents/<document_id>/chunks', methods=['GET'])
 - @token_required
 - def list_chunks(tenant_id,dataset_id,document_id):
 -     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 -         return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
 -     doc=DocumentService.query(id=document_id, kb_id=dataset_id)
 -     if not doc:
 -         return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
 -     doc=doc[0]
 -     req = request.args
 -     doc_id = document_id
 -     page = int(req.get("offset", 1))
 -     size = int(req.get("limit", 30))
 -     question = req.get("keywords", "")
 -     query = {
 -         "doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
 -     }
 -     sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
 -     key_mapping = {
 -         "chunk_num": "chunk_count",
 -         "kb_id": "dataset_id",
 -         "token_num": "token_count",
 -         "parser_id": "chunk_method"
 -     }
 -     run_mapping = {
 -         "0": "UNSTART",
 -         "1": "RUNNING",
 -         "2": "CANCEL",
 -         "3": "DONE",
 -         "4": "FAIL"
 -     }
 -     doc=doc.to_dict()
 -     renamed_doc = {}
 -     for key, value in doc.items():
 -         if key == "run":
 -             renamed_doc["run"] = run_mapping.get(str(value))
 -         new_key = key_mapping.get(key, key)
 -         renamed_doc[new_key] = value
 -     res = {"total": sres.total, "chunks": [], "doc": renamed_doc}
 -     origin_chunks = []
 -     sign = 0
 -     for id in sres.ids:
 -         d = {
 -             "chunk_id": id,
 -             "content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
 -                 id].get(
 -                 "content_with_weight", ""),
 -             "doc_id": sres.field[id]["doc_id"],
 -             "docnm_kwd": sres.field[id]["docnm_kwd"],
 -             "important_kwd": sres.field[id].get("important_kwd", []),
 -             "img_id": sres.field[id].get("img_id", ""),
 -             "available_int": sres.field[id].get("available_int", 1),
 -             "positions": sres.field[id].get("position_int", "").split("\t")
 -         }
 -         if len(d["positions"]) % 5 == 0:
 -             poss = []
 -             for i in range(0, len(d["positions"]), 5):
 -                 poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
 -                              float(d["positions"][i + 3]), float(d["positions"][i + 4])])
 -             d["positions"] = poss
 - 
 -         origin_chunks.append(d)
 -         if req.get("id"):
 -             if req.get("id") == id:
 -                 origin_chunks.clear()
 -                 origin_chunks.append(d)
 -                 sign = 1
 -                 break
 -     if req.get("id"):
 -         if sign == 0:
 -             return get_error_data_result(f"Can't find this chunk {req.get('id')}")
 -     for chunk in origin_chunks:
 -         key_mapping = {
 -             "chunk_id": "id",
 -             "content_with_weight": "content",
 -             "doc_id": "document_id",
 -             "important_kwd": "important_keywords",
 -             "img_id": "image_id"
 -         }
 -         renamed_chunk = {}
 -         for key, value in chunk.items():
 -             new_key = key_mapping.get(key, key)
 -             renamed_chunk[new_key] = value
 -         res["chunks"].append(renamed_chunk)
 -     return get_result(data=res)
 - 
 - 
 - 
 - @manager.route('/datasets/<dataset_id>/documents/<document_id>/chunks', methods=['POST'])
 - @token_required
 - def add_chunk(tenant_id,dataset_id,document_id):
 -     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 -         return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
 -     doc = DocumentService.query(id=document_id, kb_id=dataset_id)
 -     if not doc:
 -         return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
 -     doc = doc[0]
 -     req = request.json
 -     if not req.get("content"):
 -         return get_error_data_result(retmsg="`content` is required")
 -     if "important_keywords" in req:
 -         if type(req["important_keywords"]) != list:
 -             return get_error_data_result("`important_keywords` is required to be a list")
 -     md5 = hashlib.md5()
 -     md5.update((req["content"] + document_id).encode("utf-8"))
 - 
 -     chunk_id = md5.hexdigest()
 -     d = {"id": chunk_id, "content_ltks": rag_tokenizer.tokenize(req["content"]),
 -          "content_with_weight": req["content"]}
 -     d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 -     d["important_kwd"] = req.get("important_keywords", [])
 -     d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_keywords", [])))
 -     d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
 -     d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
 -     d["kb_id"] = [doc.kb_id]
 -     d["docnm_kwd"] = doc.name
 -     d["doc_id"] = doc.id
 -     embd_id = DocumentService.get_embd_id(document_id)
 -     embd_mdl = TenantLLMService.model_instance(
 -         tenant_id, LLMType.EMBEDDING.value, embd_id)
 - 
 -     v, c = embd_mdl.encode([doc.name, req["content"]])
 -     v = 0.1 * v[0] + 0.9 * v[1]
 -     d["q_%d_vec" % len(v)] = v.tolist()
 -     ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
 - 
 -     DocumentService.increment_chunk_num(
 -         doc.id, doc.kb_id, c, 1, 0)
 -     d["chunk_id"] = chunk_id
 -     # rename keys
 -     key_mapping = {
 -         "chunk_id": "id",
 -         "content_with_weight": "content",
 -         "doc_id": "document_id",
 -         "important_kwd": "important_keywords",
 -         "kb_id": "dataset_id",
 -         "create_timestamp_flt": "create_timestamp",
 -         "create_time": "create_time",
 -         "document_keyword": "document",
 -     }
 -     renamed_chunk = {}
 -     for key, value in d.items():
 -         if key in key_mapping:
 -             new_key = key_mapping.get(key, key)
 -             renamed_chunk[new_key] = value
 -     return get_result(data={"chunk": renamed_chunk})
 -     # return get_result(data={"chunk_id": chunk_id})
 - 
 - 
 - @manager.route('datasets/<dataset_id>/documents/<document_id>/chunks', methods=['DELETE'])
 - @token_required
 - def rm_chunk(tenant_id,dataset_id,document_id):
 -     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 -         return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
 -     doc = DocumentService.query(id=document_id, kb_id=dataset_id)
 -     if not doc:
 -         return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
 -     doc = doc[0]
 -     req = request.json
 -     if not req.get("chunk_ids"):
 -         return get_error_data_result("`chunk_ids` is required")
 -     query = {
 -         "doc_ids": [doc.id], "page": 1, "size": 1024, "question": "", "sort": True}
 -     sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
 -     for chunk_id in req.get("chunk_ids"):
 -         if chunk_id not in sres.ids:
 -             return get_error_data_result(f"Chunk {chunk_id} not found")
 -     if not ELASTICSEARCH.deleteByQuery(
 -             Q("ids", values=req["chunk_ids"]), search.index_name(tenant_id)):
 -         return get_error_data_result(retmsg="Index updating failure")
 -     deleted_chunk_ids = req["chunk_ids"]
 -     chunk_number = len(deleted_chunk_ids)
 -     DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
 -     return get_result()
 - 
 - 
 - 
 - @manager.route('/datasets/<dataset_id>/documents/<document_id>/chunks/<chunk_id>', methods=['PUT'])
 - @token_required
 - def update_chunk(tenant_id,dataset_id,document_id,chunk_id):
 -     try:
 -         res = ELASTICSEARCH.get(
 -         chunk_id, search.index_name(
 -             tenant_id))
 -     except Exception as e:
 -         return get_error_data_result(f"Can't find this chunk {chunk_id}")
 -     if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
 -         return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
 -     doc = DocumentService.query(id=document_id, kb_id=dataset_id)
 -     if not doc:
 -         return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
 -     doc = doc[0]
 -     query = {
 -         "doc_ids": [document_id], "page": 1, "size": 1024, "question": "", "sort": True
 -     }
 -     sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
 -     if chunk_id not in sres.ids:
 -         return get_error_data_result(f"You don't own the chunk {chunk_id}")
 -     req = request.json
 -     content=res["_source"].get("content_with_weight")
 -     d = {
 -         "id": chunk_id,
 -         "content_with_weight": req.get("content",content)}
 -     d["content_ltks"] = rag_tokenizer.tokenize(d["content_with_weight"])
 -     d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
 -     if "important_keywords" in req:
 -         if not isinstance(req["important_keywords"],list):
 -             return get_error_data_result("`important_keywords` should be a list")
 -         d["important_kwd"] = req.get("important_keywords")
 -         d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"]))
 -     if "available" in req:
 -         d["available_int"] = int(req["available"])
 -     embd_id = DocumentService.get_embd_id(document_id)
 -     embd_mdl = TenantLLMService.model_instance(
 -         tenant_id, LLMType.EMBEDDING.value, embd_id)
 -     if doc.parser_id == ParserType.QA:
 -         arr = [
 -             t for t in re.split(
 -                 r"[\n\t]",
 -                 d["content_with_weight"]) if len(t) > 1]
 -         if len(arr) != 2:
 -             return get_error_data_result(
 -                 retmsg="Q&A must be separated by TAB/ENTER key.")
 -         q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
 -         d = beAdoc(d, arr[0], arr[1], not any(
 -             [rag_tokenizer.is_chinese(t) for t in q + a]))
 - 
 -     v, c = embd_mdl.encode([doc.name, d["content_with_weight"]])
 -     v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
 -     d["q_%d_vec" % len(v)] = v.tolist()
 -     ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
 -     return get_result()
 - 
 - 
 - 
 - @manager.route('/retrieval', methods=['POST'])
 - @token_required
 - def retrieval_test(tenant_id):
 -     req = request.json
 -     if not req.get("dataset_ids"):
 -         return get_error_data_result("`datasets` is required.")
 -     kb_ids = req["dataset_ids"]
 -     if not isinstance(kb_ids,list):
 -         return get_error_data_result("`datasets` should be a list")
 -     kbs = KnowledgebaseService.get_by_ids(kb_ids)
 -     for id in kb_ids:
 -         if not KnowledgebaseService.query(id=id,tenant_id=tenant_id):
 -             return get_error_data_result(f"You don't own the dataset {id}.")
 -     embd_nms = list(set([kb.embd_id for kb in kbs]))
 -     if len(embd_nms) != 1:
 -         return get_result(
 -             retmsg='Datasets use different embedding models."',
 -             retcode=RetCode.AUTHENTICATION_ERROR)
 -     if "question" not in req:
 -         return get_error_data_result("`question` is required.")
 -     page = int(req.get("offset", 1))
 -     size = int(req.get("limit", 1024))
 -     question = req["question"]
 -     doc_ids = req.get("document_ids", [])
 -     if not isinstance(doc_ids,list):
 -         return get_error_data_result("`documents` should be a list")
 -     doc_ids_list=KnowledgebaseService.list_documents_by_ids(kb_ids)
 -     for doc_id in doc_ids:
 -         if doc_id not in doc_ids_list:
 -             return get_error_data_result(f"The datasets don't own the document {doc_id}")
 -     similarity_threshold = float(req.get("similarity_threshold", 0.2))
 -     vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
 -     top = int(req.get("top_k", 1024))
 -     if req.get("highlight")=="False" or  req.get("highlight")=="false":
 -         highlight = False
 -     else:
 -         highlight = True
 -     try:
 -         e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
 -         if not e:
 -             return get_error_data_result(retmsg="Dataset not found!")
 -         embd_mdl = TenantLLMService.model_instance(
 -             kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
 - 
 -         rerank_mdl = None
 -         if req.get("rerank_id"):
 -             rerank_mdl = TenantLLMService.model_instance(
 -                 kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])
 - 
 -         if req.get("keyword", False):
 -             chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
 -             question += keyword_extraction(chat_mdl, question)
 - 
 -         retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
 -         ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, page, size,
 -                                similarity_threshold, vector_similarity_weight, top,
 -                                doc_ids, rerank_mdl=rerank_mdl, highlight=highlight)
 -         for c in ranks["chunks"]:
 -             if "vector" in c:
 -                 del c["vector"]
 - 
 -         ##rename keys
 -         renamed_chunks = []
 -         for chunk in ranks["chunks"]:
 -             key_mapping = {
 -                 "chunk_id": "id",
 -                 "content_with_weight": "content",
 -                 "doc_id": "document_id",
 -                 "important_kwd": "important_keywords",
 -                 "docnm_kwd": "document_keyword"
 -             }
 -             rename_chunk = {}
 -             for key, value in chunk.items():
 -                 new_key = key_mapping.get(key, key)
 -                 rename_chunk[new_key] = value
 -             renamed_chunks.append(rename_chunk)
 -         ranks["chunks"] = renamed_chunks
 -         return get_result(data=ranks)
 -     except Exception as e:
 -         if str(e).find("not_found") > 0:
 -             return get_result(retmsg=f'No chunk found! Check the chunk status please!',
 -                                    retcode=RetCode.DATA_ERROR)
 -         return server_error_response(e)
 
 
  |