- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- # from beartype import BeartypeConf
- # from beartype.claw import beartype_all # <-- you didn't sign up for this
- # beartype_all(conf=BeartypeConf(violation_type=UserWarning)) # <-- emit warnings from all code
-
- import sys
- from api.utils.log_utils import initRootLogger
- CONSUMER_NO = "0" if len(sys.argv) < 2 else sys.argv[1]
- CONSUMER_NAME = "task_executor_" + CONSUMER_NO
- initRootLogger(CONSUMER_NAME)
-
- import logging
- import os
- from datetime import datetime
- import json
- import hashlib
- import copy
- import re
- import time
- import threading
- from functools import partial
- from io import BytesIO
- from multiprocessing.context import TimeoutError
- from timeit import default_timer as timer
- import tracemalloc
-
- import numpy as np
-
- from api.db import LLMType, ParserType
- from api.db.services.dialog_service import keyword_extraction, question_proposal
- from api.db.services.document_service import DocumentService
- from api.db.services.llm_service import LLMBundle
- from api.db.services.task_service import TaskService
- from api.db.services.file2document_service import File2DocumentService
- from api import settings
- from api.versions import get_ragflow_version
- from api.db.db_models import close_connection
- from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one, audio, \
- knowledge_graph, email
- from rag.nlp import search, rag_tokenizer
- from rag.raptor import RecursiveAbstractiveProcessing4TreeOrganizedRetrieval as Raptor
- from rag.settings import DOC_MAXIMUM_SIZE, SVR_QUEUE_NAME, print_rag_settings
- from rag.utils import rmSpace, num_tokens_from_string
- from rag.utils.redis_conn import REDIS_CONN, Payload
- from rag.utils.storage_factory import STORAGE_IMPL
-
- BATCH_SIZE = 64
-
- FACTORY = {
- "general": naive,
- ParserType.NAIVE.value: naive,
- ParserType.PAPER.value: paper,
- ParserType.BOOK.value: book,
- ParserType.PRESENTATION.value: presentation,
- ParserType.MANUAL.value: manual,
- ParserType.LAWS.value: laws,
- ParserType.QA.value: qa,
- ParserType.TABLE.value: table,
- ParserType.RESUME.value: resume,
- ParserType.PICTURE.value: picture,
- ParserType.ONE.value: one,
- ParserType.AUDIO.value: audio,
- ParserType.EMAIL.value: email,
- ParserType.KG.value: knowledge_graph
- }
-
- CONSUMER_NAME = "task_consumer_" + CONSUMER_NO
- PAYLOAD: Payload | None = None
- BOOT_AT = datetime.now().isoformat()
- PENDING_TASKS = 0
- LAG_TASKS = 0
-
- mt_lock = threading.Lock()
- DONE_TASKS = 0
- FAILED_TASKS = 0
- CURRENT_TASK = None
-
-
- def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
- global PAYLOAD
- if prog is not None and prog < 0:
- msg = "[ERROR]" + msg
- cancel = TaskService.do_cancel(task_id)
- if cancel:
- msg += " [Canceled]"
- prog = -1
-
- if to_page > 0:
- if msg:
- msg = f"Page({from_page + 1}~{to_page + 1}): " + msg
- d = {"progress_msg": msg}
- if prog is not None:
- d["progress"] = prog
- try:
- logging.info(f"set_progress({task_id}), progress: {prog}, progress_msg: {msg}")
- TaskService.update_progress(task_id, d)
- except Exception:
- logging.exception(f"set_progress({task_id}) got exception")
-
- close_connection()
- if cancel:
- if PAYLOAD:
- PAYLOAD.ack()
- PAYLOAD = None
- os._exit(0)
-
-
- def collect():
- global CONSUMER_NAME, PAYLOAD, DONE_TASKS, FAILED_TASKS
- try:
- PAYLOAD = REDIS_CONN.get_unacked_for(CONSUMER_NAME, SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
- if not PAYLOAD:
- PAYLOAD = REDIS_CONN.queue_consumer(SVR_QUEUE_NAME, "rag_flow_svr_task_broker", CONSUMER_NAME)
- if not PAYLOAD:
- time.sleep(1)
- return None
- except Exception:
- logging.exception("Get task event from queue exception")
- return None
-
- msg = PAYLOAD.get_message()
- if not msg:
- return None
-
- if TaskService.do_cancel(msg["id"]):
- with mt_lock:
- DONE_TASKS += 1
- logging.info("Task {} has been canceled.".format(msg["id"]))
- return None
- task = TaskService.get_task(msg["id"])
- if not task:
- with mt_lock:
- DONE_TASKS += 1
- logging.warning("{} empty task!".format(msg["id"]))
- return None
-
- if msg.get("type", "") == "raptor":
- task["task_type"] = "raptor"
- return task
-
-
- def get_storage_binary(bucket, name):
- return STORAGE_IMPL.get(bucket, name)
-
-
- def build_chunks(task, progress_callback):
- if task["size"] > DOC_MAXIMUM_SIZE:
- set_progress(task["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
- (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
- return []
-
- chunker = FACTORY[task["parser_id"].lower()]
- try:
- st = timer()
- bucket, name = File2DocumentService.get_storage_address(doc_id=task["doc_id"])
- binary = get_storage_binary(bucket, name)
- logging.info("From minio({}) {}/{}".format(timer() - st, task["location"], task["name"]))
- except TimeoutError:
- progress_callback(-1, "Internal server error: Fetch file from minio timeout. Could you try it again.")
- logging.exception("Minio {}/{} got timeout: Fetch file from minio timeout.".format(task["location"], task["name"]))
- raise
- except Exception as e:
- if re.search("(No such file|not found)", str(e)):
- progress_callback(-1, "Can not find file <%s> from minio. Could you try it again?" % task["name"])
- else:
- progress_callback(-1, "Get file from minio: %s" % str(e).replace("'", ""))
- logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"]))
- raise
-
- try:
- cks = chunker.chunk(task["name"], binary=binary, from_page=task["from_page"],
- to_page=task["to_page"], lang=task["language"], callback=progress_callback,
- kb_id=task["kb_id"], parser_config=task["parser_config"], tenant_id=task["tenant_id"])
- logging.info("Chunking({}) {}/{} done".format(timer() - st, task["location"], task["name"]))
- except Exception as e:
- progress_callback(-1, "Internal server error while chunking: %s" % str(e).replace("'", ""))
- logging.exception("Chunking {}/{} got exception".format(task["location"], task["name"]))
- raise
-
- docs = []
- doc = {
- "doc_id": task["doc_id"],
- "kb_id": str(task["kb_id"])
- }
- if task["pagerank"]:
- doc["pagerank_fea"] = int(task["pagerank"])
- el = 0
- for ck in cks:
- d = copy.deepcopy(doc)
- d.update(ck)
- md5 = hashlib.md5()
- md5.update((ck["content_with_weight"] +
- str(d["doc_id"])).encode("utf-8"))
- d["id"] = md5.hexdigest()
- d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
- d["create_timestamp_flt"] = datetime.now().timestamp()
- if not d.get("image"):
- _ = d.pop("image", None)
- d["img_id"] = ""
- d["page_num_int"] = []
- d["position_int"] = []
- d["top_int"] = []
- docs.append(d)
- continue
-
- try:
- output_buffer = BytesIO()
- if isinstance(d["image"], bytes):
- output_buffer = BytesIO(d["image"])
- else:
- d["image"].save(output_buffer, format='JPEG')
-
- st = timer()
- STORAGE_IMPL.put(task["kb_id"], d["id"], output_buffer.getvalue())
- el += timer() - st
- except Exception:
- logging.exception("Saving image of chunk {}/{}/{} got exception".format(task["location"], task["name"], d["_id"]))
- raise
-
- d["img_id"] = "{}-{}".format(task["kb_id"], d["id"])
- del d["image"]
- docs.append(d)
- logging.info("MINIO PUT({}):{}".format(task["name"], el))
-
- if task["parser_config"].get("auto_keywords", 0):
- st = timer()
- progress_callback(msg="Start to generate keywords for every chunk ...")
- chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
- for d in docs:
- d["important_kwd"] = keyword_extraction(chat_mdl, d["content_with_weight"],
- task["parser_config"]["auto_keywords"]).split(",")
- d["important_tks"] = rag_tokenizer.tokenize(" ".join(d["important_kwd"]))
- progress_callback(msg="Keywords generation completed in {:.2f}s".format(timer() - st))
-
- if task["parser_config"].get("auto_questions", 0):
- st = timer()
- progress_callback(msg="Start to generate questions for every chunk ...")
- chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
- for d in docs:
- d["question_kwd"] = question_proposal(chat_mdl, d["content_with_weight"], task["parser_config"]["auto_questions"]).split("\n")
- d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
- progress_callback(msg="Question generation completed in {:.2f}s".format(timer() - st))
-
- return docs
-
-
- def init_kb(row, vector_size: int):
- idxnm = search.index_name(row["tenant_id"])
- return settings.docStoreConn.createIdx(idxnm, row.get("kb_id",""), vector_size)
-
-
- def embedding(docs, mdl, parser_config=None, callback=None):
- if parser_config is None:
- parser_config = {}
- batch_size = 16
- tts, cnts = [], []
- for d in docs:
- tts.append(rmSpace(d.get("docnm_kwd", "Title")))
- c = "\n".join(d.get("question_kwd", []))
- if not c:
- c = d["content_with_weight"]
- c = re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", c)
- cnts.append(c)
-
- tk_count = 0
- if len(tts) == len(cnts):
- tts_ = np.array([])
- for i in range(0, len(tts), batch_size):
- vts, c = mdl.encode(tts[i: i + batch_size])
- if len(tts_) == 0:
- tts_ = vts
- else:
- tts_ = np.concatenate((tts_, vts), axis=0)
- tk_count += c
- callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
- tts = tts_
-
- cnts_ = np.array([])
- for i in range(0, len(cnts), batch_size):
- vts, c = mdl.encode(cnts[i: i + batch_size])
- if len(cnts_) == 0:
- cnts_ = vts
- else:
- cnts_ = np.concatenate((cnts_, vts), axis=0)
- tk_count += c
- callback(prog=0.7 + 0.2 * (i + 1) / len(cnts), msg="")
- cnts = cnts_
-
- title_w = float(parser_config.get("filename_embd_weight", 0.1))
- vects = (title_w * tts + (1 - title_w) *
- cnts) if len(tts) == len(cnts) else cnts
-
- assert len(vects) == len(docs)
- vector_size = 0
- for i, d in enumerate(docs):
- v = vects[i].tolist()
- vector_size = len(v)
- d["q_%d_vec" % len(v)] = v
- return tk_count, vector_size
-
-
- def run_raptor(row, chat_mdl, embd_mdl, callback=None):
- vts, _ = embd_mdl.encode(["ok"])
- vector_size = len(vts[0])
- vctr_nm = "q_%d_vec" % vector_size
- chunks = []
- for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
- fields=["content_with_weight", vctr_nm]):
- chunks.append((d["content_with_weight"], np.array(d[vctr_nm])))
-
- raptor = Raptor(
- row["parser_config"]["raptor"].get("max_cluster", 64),
- chat_mdl,
- embd_mdl,
- row["parser_config"]["raptor"]["prompt"],
- row["parser_config"]["raptor"]["max_token"],
- row["parser_config"]["raptor"]["threshold"]
- )
- original_length = len(chunks)
- chunks = raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
- doc = {
- "doc_id": row["doc_id"],
- "kb_id": [str(row["kb_id"])],
- "docnm_kwd": row["name"],
- "title_tks": rag_tokenizer.tokenize(row["name"])
- }
- if row["pagerank"]:
- doc["pagerank_fea"] = int(row["pagerank"])
- res = []
- tk_count = 0
- for content, vctr in chunks[original_length:]:
- d = copy.deepcopy(doc)
- md5 = hashlib.md5()
- md5.update((content + str(d["doc_id"])).encode("utf-8"))
- d["id"] = md5.hexdigest()
- d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
- d["create_timestamp_flt"] = datetime.now().timestamp()
- d[vctr_nm] = vctr.tolist()
- d["content_with_weight"] = content
- d["content_ltks"] = rag_tokenizer.tokenize(content)
- d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
- res.append(d)
- tk_count += num_tokens_from_string(content)
- return res, tk_count, vector_size
-
-
- def do_handle_task(task):
- task_id = task["id"]
- task_from_page = task["from_page"]
- task_to_page = task["to_page"]
- task_tenant_id = task["tenant_id"]
- task_embedding_id = task["embd_id"]
- task_language = task["language"]
- task_llm_id = task["llm_id"]
- task_dataset_id = task["kb_id"]
- task_doc_id = task["doc_id"]
- task_document_name = task["name"]
- task_parser_config = task["parser_config"]
-
- # prepare the progress callback function
- progress_callback = partial(set_progress, task_id, task_from_page, task_to_page)
- try:
- # bind embedding model
- embedding_model = LLMBundle(task_tenant_id, LLMType.EMBEDDING, llm_name=task_embedding_id, lang=task_language)
- except Exception as e:
- error_message = f'Fail to bind embedding model: {str(e)}'
- progress_callback(-1, msg=error_message)
- logging.exception(error_message)
- raise
-
- # Either using RAPTOR or Standard chunking methods
- if task.get("task_type", "") == "raptor":
- try:
- # bind LLM for raptor
- chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
-
- # run RAPTOR
- chunks, token_count, vector_size = run_raptor(task, chat_model, embedding_model, progress_callback)
- except Exception as e:
- error_message = f'Fail to bind LLM used by RAPTOR: {str(e)}'
- progress_callback(-1, msg=error_message)
- logging.exception(error_message)
- raise
- else:
- # Standard chunking methods
- start_ts = timer()
- chunks = build_chunks(task, progress_callback)
- logging.info("Build document {}: {:.2f}s".format(task_document_name, timer() - start_ts))
- if chunks is None:
- return
- if not chunks:
- progress_callback(1., msg=f"No chunk built from {task_document_name}")
- return
- # TODO: exception handler
- ## set_progress(task["did"], -1, "ERROR: ")
- progress_callback(msg="Generate {} chunks".format(len(chunks)))
- start_ts = timer()
- try:
- token_count, vector_size = embedding(chunks, embedding_model, task_parser_config, progress_callback)
- except Exception as e:
- error_message = "Generate embedding error:{}".format(str(e))
- progress_callback(-1, error_message)
- logging.exception(error_message)
- token_count = 0
- raise
- progress_message = "Embedding chunks ({:.2f}s)".format(timer() - start_ts)
- logging.info(progress_message)
- progress_callback(msg=progress_message)
- # logging.info(f"task_executor init_kb index {search.index_name(task_tenant_id)} embedding_model {embedding_model.llm_name} vector length {vector_size}")
- init_kb(task, vector_size)
- chunk_count = len(set([chunk["id"] for chunk in chunks]))
- start_ts = timer()
- doc_store_result = ""
- es_bulk_size = 4
- for b in range(0, len(chunks), es_bulk_size):
- doc_store_result = settings.docStoreConn.insert(chunks[b:b + es_bulk_size], search.index_name(task_tenant_id), task_dataset_id)
- if b % 128 == 0:
- progress_callback(prog=0.8 + 0.1 * (b + 1) / len(chunks), msg="")
- logging.info("Indexing {} elapsed: {:.2f}".format(task_document_name, timer() - start_ts))
- if doc_store_result:
- error_message = f"Insert chunk error: {doc_store_result}, please check log file and Elasticsearch/Infinity status!"
- progress_callback(-1, msg=error_message)
- settings.docStoreConn.delete({"doc_id": task_doc_id}, search.index_name(task_tenant_id), task_dataset_id)
- logging.error(error_message)
- raise Exception(error_message)
-
- if TaskService.do_cancel(task_id):
- settings.docStoreConn.delete({"doc_id": task_doc_id}, search.index_name(task_tenant_id), task_dataset_id)
- return
-
- DocumentService.increment_chunk_num(task_doc_id, task_dataset_id, token_count, chunk_count, 0)
-
- time_cost = timer() - start_ts
- progress_callback(prog=1.0, msg="Done ({:.2f}s)".format(time_cost))
- logging.info("Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(task_id, token_count, len(chunks), time_cost))
-
-
- def handle_task():
- global PAYLOAD, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK
- task = collect()
- if task:
- try:
- logging.info(f"handle_task begin for task {json.dumps(task)}")
- with mt_lock:
- CURRENT_TASK = copy.deepcopy(task)
- do_handle_task(task)
- with mt_lock:
- DONE_TASKS += 1
- CURRENT_TASK = None
- logging.info(f"handle_task done for task {json.dumps(task)}")
- except Exception:
- with mt_lock:
- FAILED_TASKS += 1
- CURRENT_TASK = None
- logging.exception(f"handle_task got exception for task {json.dumps(task)}")
- if PAYLOAD:
- PAYLOAD.ack()
- PAYLOAD = None
-
-
- def report_status():
- global CONSUMER_NAME, BOOT_AT, PENDING_TASKS, LAG_TASKS, mt_lock, DONE_TASKS, FAILED_TASKS, CURRENT_TASK
- REDIS_CONN.sadd("TASKEXE", CONSUMER_NAME)
- while True:
- try:
- now = datetime.now()
- group_info = REDIS_CONN.queue_info(SVR_QUEUE_NAME, "rag_flow_svr_task_broker")
- if group_info is not None:
- PENDING_TASKS = int(group_info["pending"])
- LAG_TASKS = int(group_info["lag"])
-
- with mt_lock:
- heartbeat = json.dumps({
- "name": CONSUMER_NAME,
- "now": now.isoformat(),
- "boot_at": BOOT_AT,
- "pending": PENDING_TASKS,
- "lag": LAG_TASKS,
- "done": DONE_TASKS,
- "failed": FAILED_TASKS,
- "current": CURRENT_TASK,
- })
- REDIS_CONN.zadd(CONSUMER_NAME, heartbeat, now.timestamp())
- logging.info(f"{CONSUMER_NAME} reported heartbeat: {heartbeat}")
-
- expired = REDIS_CONN.zcount(CONSUMER_NAME, 0, now.timestamp() - 60 * 30)
- if expired > 0:
- REDIS_CONN.zpopmin(CONSUMER_NAME, expired)
- except Exception:
- logging.exception("report_status got exception")
- time.sleep(30)
-
-
- def analyze_heap(snapshot1: tracemalloc.Snapshot, snapshot2: tracemalloc.Snapshot, snapshot_id: int, dump_full: bool):
- msg = ""
- if dump_full:
- stats2 = snapshot2.statistics('lineno')
- msg += f"{CONSUMER_NAME} memory usage of snapshot {snapshot_id}:\n"
- for stat in stats2[:10]:
- msg += f"{stat}\n"
- stats1_vs_2 = snapshot2.compare_to(snapshot1, 'lineno')
- msg += f"{CONSUMER_NAME} memory usage increase from snapshot {snapshot_id - 1} to snapshot {snapshot_id}:\n"
- for stat in stats1_vs_2[:10]:
- msg += f"{stat}\n"
- msg += f"{CONSUMER_NAME} detailed traceback for the top memory consumers:\n"
- for stat in stats1_vs_2[:3]:
- msg += '\n'.join(stat.traceback.format())
- logging.info(msg)
-
-
- def main():
- logging.info(r"""
- ______ __ ______ __
- /_ __/___ ______/ /__ / ____/ _____ _______ __/ /_____ _____
- / / / __ `/ ___/ //_/ / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/
- / / / /_/ (__ ) ,< / /____> </ __/ /__/ /_/ / /_/ /_/ / /
- /_/ \__,_/____/_/|_| /_____/_/|_|\___/\___/\__,_/\__/\____/_/
- """)
- logging.info(f'TaskExecutor: RAGFlow version: {get_ragflow_version()}')
- settings.init_settings()
- print_rag_settings()
- background_thread = threading.Thread(target=report_status)
- background_thread.daemon = True
- background_thread.start()
-
- TRACE_MALLOC_DELTA = int(os.environ.get('TRACE_MALLOC_DELTA', "0"))
- TRACE_MALLOC_FULL = int(os.environ.get('TRACE_MALLOC_FULL', "0"))
- if TRACE_MALLOC_DELTA > 0:
- if TRACE_MALLOC_FULL < TRACE_MALLOC_DELTA:
- TRACE_MALLOC_FULL = TRACE_MALLOC_DELTA
- tracemalloc.start()
- snapshot1 = tracemalloc.take_snapshot()
- while True:
- handle_task()
- num_tasks = DONE_TASKS + FAILED_TASKS
- if TRACE_MALLOC_DELTA > 0 and num_tasks > 0 and num_tasks % TRACE_MALLOC_DELTA == 0:
- snapshot2 = tracemalloc.take_snapshot()
- analyze_heap(snapshot1, snapshot2, int(num_tasks / TRACE_MALLOC_DELTA), num_tasks % TRACE_MALLOC_FULL == 0)
- snapshot1 = snapshot2
- snapshot2 = None
-
-
- if __name__ == "__main__":
- main()
|