- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import os
 - import logging
 - from api.utils import get_base_config, decrypt_database_config
 - from api.utils.file_utils import get_project_base_directory
 - 
 - # Server
 - RAG_CONF_PATH = os.path.join(get_project_base_directory(), "conf")
 - 
 - # Get storage type and document engine from system environment variables
 - STORAGE_IMPL_TYPE = os.getenv('STORAGE_IMPL', 'MINIO')
 - DOC_ENGINE = os.getenv('DOC_ENGINE', 'elasticsearch')
 - 
 - ES = {}
 - INFINITY = {}
 - AZURE = {}
 - S3 = {}
 - MINIO = {}
 - OSS = {}
 - OS = {}
 - 
 - # Initialize the selected configuration data based on environment variables to solve the problem of initialization errors due to lack of configuration
 - if DOC_ENGINE == 'elasticsearch':
 -     ES = get_base_config("es", {})
 - elif DOC_ENGINE == 'opensearch':
 -     OS = get_base_config("os", {})
 - elif DOC_ENGINE == 'infinity':
 -     INFINITY = get_base_config("infinity", {"uri": "infinity:23817"})
 - 
 - if STORAGE_IMPL_TYPE in ['AZURE_SPN', 'AZURE_SAS']:
 -     AZURE = get_base_config("azure", {})
 - elif STORAGE_IMPL_TYPE == 'AWS_S3':
 -     S3 = get_base_config("s3", {})
 - elif STORAGE_IMPL_TYPE == 'MINIO':
 -     MINIO = decrypt_database_config(name="minio")
 - elif STORAGE_IMPL_TYPE == 'OSS':
 -     OSS = get_base_config("oss", {})
 - 
 - try:
 -     REDIS = decrypt_database_config(name="redis")
 - except Exception:
 -     REDIS = {}
 -     pass
 - DOC_MAXIMUM_SIZE = int(os.environ.get("MAX_CONTENT_LENGTH", 128 * 1024 * 1024))
 - DOC_BULK_SIZE = int(os.environ.get("DOC_BULK_SIZE", 4))
 - EMBEDDING_BATCH_SIZE = int(os.environ.get("EMBEDDING_BATCH_SIZE", 16))
 - SVR_QUEUE_NAME = "rag_flow_svr_queue"
 - SVR_CONSUMER_GROUP_NAME = "rag_flow_svr_task_broker"
 - PAGERANK_FLD = "pagerank_fea"
 - TAG_FLD = "tag_feas"
 - 
 - PARALLEL_DEVICES = 0
 - try:
 -     import torch.cuda
 -     PARALLEL_DEVICES = torch.cuda.device_count()
 -     logging.info(f"found {PARALLEL_DEVICES} gpus")
 - except Exception:
 -     logging.info("can't import package 'torch'")
 - 
 - def print_rag_settings():
 -     logging.info(f"MAX_CONTENT_LENGTH: {DOC_MAXIMUM_SIZE}")
 -     logging.info(f"MAX_FILE_COUNT_PER_USER: {int(os.environ.get('MAX_FILE_NUM_PER_USER', 0))}")
 - 
 - 
 - def get_svr_queue_name(priority: int) -> str:
 -     if priority == 0:
 -         return SVR_QUEUE_NAME
 -     return f"{SVR_QUEUE_NAME}_{priority}"
 - 
 - def get_svr_queue_names():
 -     return [get_svr_queue_name(priority) for priority in [1, 0]]
 
 
  |