- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import inspect
- import logging
- import re
- from functools import partial
- from typing import Generator
- from api.db.db_models import LLM
- from api.db.services.common_service import CommonService
- from api.db.services.tenant_llm_service import LLM4Tenant, TenantLLMService
-
-
- class LLMService(CommonService):
- model = LLM
-
-
- def get_init_tenant_llm(user_id):
- from api import settings
- tenant_llm = []
-
- seen = set()
- factory_configs = []
- for factory_config in [
- settings.CHAT_CFG,
- settings.EMBEDDING_CFG,
- settings.ASR_CFG,
- settings.IMAGE2TEXT_CFG,
- settings.RERANK_CFG,
- ]:
- factory_name = factory_config["factory"]
- if factory_name not in seen:
- seen.add(factory_name)
- factory_configs.append(factory_config)
-
- for factory_config in factory_configs:
- for llm in LLMService.query(fid=factory_config["factory"]):
- tenant_llm.append(
- {
- "tenant_id": user_id,
- "llm_factory": factory_config["factory"],
- "llm_name": llm.llm_name,
- "model_type": llm.model_type,
- "api_key": factory_config["api_key"],
- "api_base": factory_config["base_url"],
- "max_tokens": llm.max_tokens if llm.max_tokens else 8192,
- }
- )
-
- if settings.LIGHTEN != 1:
- for buildin_embedding_model in settings.BUILTIN_EMBEDDING_MODELS:
- mdlnm, fid = TenantLLMService.split_model_name_and_factory(buildin_embedding_model)
- tenant_llm.append(
- {
- "tenant_id": user_id,
- "llm_factory": fid,
- "llm_name": mdlnm,
- "model_type": "embedding",
- "api_key": "",
- "api_base": "",
- "max_tokens": 1024 if buildin_embedding_model == "BAAI/bge-large-zh-v1.5@BAAI" else 512,
- }
- )
-
- unique = {}
- for item in tenant_llm:
- key = (item["tenant_id"], item["llm_factory"], item["llm_name"])
- if key not in unique:
- unique[key] = item
- return list(unique.values())
-
-
- class LLMBundle(LLM4Tenant):
- def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese", **kwargs):
- super().__init__(tenant_id, llm_type, llm_name, lang, **kwargs)
-
- def bind_tools(self, toolcall_session, tools):
- if not self.is_tools:
- logging.warning(f"Model {self.llm_name} does not support tool call, but you have assigned one or more tools to it!")
- return
- self.mdl.bind_tools(toolcall_session, tools)
-
- def encode(self, texts: list):
- if self.langfuse:
- generation = self.langfuse.start_generation(trace_context=self.trace_context, name="encode", model=self.llm_name, input={"texts": texts})
-
- embeddings, used_tokens = self.mdl.encode(texts)
- llm_name = getattr(self, "llm_name", None)
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name):
- logging.error("LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
-
- if self.langfuse:
- generation.update(usage_details={"total_tokens": used_tokens})
- generation.end()
-
- return embeddings, used_tokens
-
- def encode_queries(self, query: str):
- if self.langfuse:
- generation = self.langfuse.start_generation(trace_context=self.trace_context, name="encode_queries", model=self.llm_name, input={"query": query})
-
- emd, used_tokens = self.mdl.encode_queries(query)
- llm_name = getattr(self, "llm_name", None)
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, llm_name):
- logging.error("LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
-
- if self.langfuse:
- generation.update(usage_details={"total_tokens": used_tokens})
- generation.end()
-
- return emd, used_tokens
-
- def similarity(self, query: str, texts: list):
- if self.langfuse:
- generation = self.langfuse.start_generation(trace_context=self.trace_context, name="similarity", model=self.llm_name, input={"query": query, "texts": texts})
-
- sim, used_tokens = self.mdl.similarity(query, texts)
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
- logging.error("LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
-
- if self.langfuse:
- generation.update(usage_details={"total_tokens": used_tokens})
- generation.end()
-
- return sim, used_tokens
-
- def describe(self, image, max_tokens=300):
- if self.langfuse:
- generation = self.langfuse.start_generation(trace_context=self.trace_context, name="describe", metadata={"model": self.llm_name})
-
- txt, used_tokens = self.mdl.describe(image)
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
- logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
-
- if self.langfuse:
- generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
- generation.end()
-
- return txt
-
- def describe_with_prompt(self, image, prompt):
- if self.langfuse:
- generation = self.langfuse.start_generation(trace_context=self.trace_context, name="describe_with_prompt", metadata={"model": self.llm_name, "prompt": prompt})
-
- txt, used_tokens = self.mdl.describe_with_prompt(image, prompt)
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
- logging.error("LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
-
- if self.langfuse:
- generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
- generation.end()
-
- return txt
-
- def transcription(self, audio):
- if self.langfuse:
- generation = self.langfuse.start_generation(trace_context=self.trace_context, name="transcription", metadata={"model": self.llm_name})
-
- txt, used_tokens = self.mdl.transcription(audio)
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens):
- logging.error("LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
-
- if self.langfuse:
- generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
- generation.end()
-
- return txt
-
- def tts(self, text: str) -> Generator[bytes, None, None]:
- if self.langfuse:
- generation = self.langfuse.start_generation(trace_context=self.trace_context, name="tts", input={"text": text})
-
- for chunk in self.mdl.tts(text):
- if isinstance(chunk, int):
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, chunk, self.llm_name):
- logging.error("LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
- return
- yield chunk
-
- if self.langfuse:
- generation.end()
-
- def _remove_reasoning_content(self, txt: str) -> str:
- first_think_start = txt.find("<think>")
- if first_think_start == -1:
- return txt
-
- last_think_end = txt.rfind("</think>")
- if last_think_end == -1:
- return txt
-
- if last_think_end < first_think_start:
- return txt
-
- return txt[last_think_end + len("</think>") :]
-
- @staticmethod
- def _clean_param(chat_partial, **kwargs):
- func = chat_partial.func
- sig = inspect.signature(func)
- keyword_args = []
- support_var_args = False
- for param in sig.parameters.values():
- if param.kind == inspect.Parameter.VAR_KEYWORD or param.kind == inspect.Parameter.VAR_POSITIONAL:
- support_var_args = True
- elif param.kind == inspect.Parameter.KEYWORD_ONLY:
- keyword_args.append(param.name)
-
- use_kwargs = kwargs
- if not support_var_args:
- use_kwargs = {k: v for k, v in kwargs.items() if k in keyword_args}
- return use_kwargs
-
- def chat(self, system: str, history: list, gen_conf: dict = {}, **kwargs) -> str:
- if self.langfuse:
- generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat", model=self.llm_name, input={"system": system, "history": history})
-
- chat_partial = partial(self.mdl.chat, system, history, gen_conf)
- if self.is_tools and self.mdl.is_tools:
- chat_partial = partial(self.mdl.chat_with_tools, system, history, gen_conf)
-
- use_kwargs = self._clean_param(chat_partial, **kwargs)
- txt, used_tokens = chat_partial(**use_kwargs)
- txt = self._remove_reasoning_content(txt)
-
- if not self.verbose_tool_use:
- txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
-
- if isinstance(txt, int) and not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, used_tokens, self.llm_name):
- logging.error("LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
-
- if self.langfuse:
- generation.update(output={"output": txt}, usage_details={"total_tokens": used_tokens})
- generation.end()
-
- return txt
-
- def chat_streamly(self, system: str, history: list, gen_conf: dict = {}, **kwargs):
- if self.langfuse:
- generation = self.langfuse.start_generation(trace_context=self.trace_context, name="chat_streamly", model=self.llm_name, input={"system": system, "history": history})
-
- ans = ""
- chat_partial = partial(self.mdl.chat_streamly, system, history, gen_conf)
- total_tokens = 0
- if self.is_tools and self.mdl.is_tools:
- chat_partial = partial(self.mdl.chat_streamly_with_tools, system, history, gen_conf)
- use_kwargs = self._clean_param(chat_partial, **kwargs)
- for txt in chat_partial(**use_kwargs):
- if isinstance(txt, int):
- total_tokens = txt
- if self.langfuse:
- generation.update(output={"output": ans})
- generation.end()
- break
-
- if txt.endswith("</think>"):
- ans = ans.rstrip("</think>")
-
- if not self.verbose_tool_use:
- txt = re.sub(r"<tool_call>.*?</tool_call>", "", txt, flags=re.DOTALL)
-
- ans += txt
- yield ans
-
- if total_tokens > 0:
- if not TenantLLMService.increase_usage(self.tenant_id, self.llm_type, txt, self.llm_name):
- logging.error("LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
|