- #
 - #  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - import base64
 - import io
 - import json
 - import os
 - from abc import ABC
 - from io import BytesIO
 - 
 - import requests
 - from ollama import Client
 - from openai import OpenAI
 - from openai.lib.azure import AzureOpenAI
 - from PIL import Image
 - from zhipuai import ZhipuAI
 - 
 - from api.utils import get_uuid
 - from api.utils.file_utils import get_project_base_directory
 - from rag.nlp import is_english
 - from rag.prompts import vision_llm_describe_prompt
 - from rag.utils import num_tokens_from_string
 - 
 - 
 - class Base(ABC):
 -     def __init__(self, key, model_name):
 -         pass
 - 
 -     def describe(self, image):
 -         raise NotImplementedError("Please implement encode method!")
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         raise NotImplementedError("Please implement encode method!")
 - 
 -     def chat(self, system, history, gen_conf, image=""):
 -         if system:
 -             history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 -         try:
 -             for his in history:
 -                 if his["role"] == "user":
 -                     his["content"] = self.chat_prompt(his["content"], image)
 - 
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 temperature=gen_conf.get("temperature", 0.3),
 -                 top_p=gen_conf.get("top_p", 0.7)
 -             )
 -             return response.choices[0].message.content.strip(), response.usage.total_tokens
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf, image=""):
 -         if system:
 -             history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 - 
 -         ans = ""
 -         tk_count = 0
 -         try:
 -             for his in history:
 -                 if his["role"] == "user":
 -                     his["content"] = self.chat_prompt(his["content"], image)
 - 
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 temperature=gen_conf.get("temperature", 0.3),
 -                 top_p=gen_conf.get("top_p", 0.7),
 -                 stream=True
 -             )
 -             for resp in response:
 -                 if not resp.choices[0].delta.content:
 -                     continue
 -                 delta = resp.choices[0].delta.content
 -                 ans += delta
 -                 if resp.choices[0].finish_reason == "length":
 -                     ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                         [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -                     tk_count = resp.usage.total_tokens
 -                 if resp.choices[0].finish_reason == "stop":
 -                     tk_count = resp.usage.total_tokens
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield tk_count
 - 
 -     def image2base64(self, image):
 -         if isinstance(image, bytes):
 -             return base64.b64encode(image).decode("utf-8")
 -         if isinstance(image, BytesIO):
 -             return base64.b64encode(image.getvalue()).decode("utf-8")
 -         buffered = BytesIO()
 -         try:
 -             image.save(buffered, format="JPEG")
 -         except Exception:
 -             image.save(buffered, format="PNG")
 -         return base64.b64encode(buffered.getvalue()).decode("utf-8")
 - 
 -     def prompt(self, b64):
 -         return [
 -             {
 -                 "role": "user",
 -                 "content": [
 -                     {
 -                         "type": "image_url",
 -                         "image_url": {
 -                             "url": f"data:image/jpeg;base64,{b64}"
 -                         },
 -                     },
 -                     {
 -                         "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
 -                         "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
 -                     },
 -                 ],
 -             }
 -         ]
 - 
 -     def vision_llm_prompt(self, b64, prompt=None):
 -         return [
 -             {
 -                 "role": "user",
 -                 "content": [
 -                     {
 -                         "type": "image_url",
 -                         "image_url": {
 -                                 "url": f"data:image/jpeg;base64,{b64}"
 -                         },
 -                     },
 -                     {
 -                         "type": "text",
 -                         "text": prompt if prompt else vision_llm_describe_prompt(),
 -                     },
 -                 ],
 -             }
 -         ]
 - 
 -     def chat_prompt(self, text, b64):
 -         return [
 -             {
 -                 "type": "image_url",
 -                 "image_url": {
 -                     "url": f"data:image/jpeg;base64,{b64}",
 -                 },
 -             },
 -             {
 -                 "type": "text",
 -                 "text": text
 -             },
 -         ]
 - 
 - 
 - class GptV4(Base):
 -     def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"):
 -         if not base_url:
 -             base_url = "https://api.openai.com/v1"
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 -         self.lang = lang
 - 
 -     def describe(self, image):
 -         b64 = self.image2base64(image)
 -         prompt = self.prompt(b64)
 -         for i in range(len(prompt)):
 -             for c in prompt[i]["content"]:
 -                 if "text" in c:
 -                     c["type"] = "text"
 - 
 -         res = self.client.chat.completions.create(
 -             model=self.model_name,
 -             messages=prompt
 -         )
 -         return res.choices[0].message.content.strip(), res.usage.total_tokens
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         b64 = self.image2base64(image)
 -         vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 - 
 -         res = self.client.chat.completions.create(
 -             model=self.model_name,
 -             messages=vision_prompt,
 -         )
 -         return res.choices[0].message.content.strip(), res.usage.total_tokens
 - 
 - 
 - class AzureGptV4(Base):
 -     def __init__(self, key, model_name, lang="Chinese", **kwargs):
 -         api_key = json.loads(key).get('api_key', '')
 -         api_version = json.loads(key).get('api_version', '2024-02-01')
 -         self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
 -         self.model_name = model_name
 -         self.lang = lang
 - 
 -     def describe(self, image):
 -         b64 = self.image2base64(image)
 -         prompt = self.prompt(b64)
 -         for i in range(len(prompt)):
 -             for c in prompt[i]["content"]:
 -                 if "text" in c:
 -                     c["type"] = "text"
 - 
 -         res = self.client.chat.completions.create(
 -             model=self.model_name,
 -             messages=prompt
 -         )
 -         return res.choices[0].message.content.strip(), res.usage.total_tokens
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         b64 = self.image2base64(image)
 -         vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 - 
 -         res = self.client.chat.completions.create(
 -             model=self.model_name,
 -             messages=vision_prompt,
 -         )
 -         return res.choices[0].message.content.strip(), res.usage.total_tokens
 - 
 - 
 - class QWenCV(Base):
 -     def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", **kwargs):
 -         import dashscope
 -         dashscope.api_key = key
 -         self.model_name = model_name
 -         self.lang = lang
 - 
 -     def prompt(self, binary):
 -         # stupid as hell
 -         tmp_dir = get_project_base_directory("tmp")
 -         if not os.path.exists(tmp_dir):
 -             os.mkdir(tmp_dir)
 -         path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
 -         Image.open(io.BytesIO(binary)).save(path)
 -         return [
 -             {
 -                 "role": "user",
 -                 "content": [
 -                     {
 -                         "image": f"file://{path}"
 -                     },
 -                     {
 -                         "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
 -                         "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
 -                     },
 -                 ],
 -             }
 -         ]
 - 
 -     def vision_llm_prompt(self, binary, prompt=None):
 -         # stupid as hell
 -         tmp_dir = get_project_base_directory("tmp")
 -         if not os.path.exists(tmp_dir):
 -             os.mkdir(tmp_dir)
 -         path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
 -         Image.open(io.BytesIO(binary)).save(path)
 - 
 -         return [
 -             {
 -                 "role": "user",
 -                 "content": [
 -                     {
 -                         "image": f"file://{path}"
 -                     },
 -                     {
 -                         "text":  prompt if prompt else vision_llm_describe_prompt(),
 -                     },
 -                 ],
 -             }
 -         ]
 - 
 -     def chat_prompt(self, text, b64):
 -         return [
 -             {"image": f"{b64}"},
 -             {"text": text},
 -         ]
 - 
 -     def describe(self, image):
 -         from http import HTTPStatus
 - 
 -         from dashscope import MultiModalConversation
 -         response = MultiModalConversation.call(model=self.model_name, messages=self.prompt(image))
 -         if response.status_code == HTTPStatus.OK:
 -             return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
 -         return response.message, 0
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         from http import HTTPStatus
 - 
 -         from dashscope import MultiModalConversation
 - 
 -         vision_prompt = self.vision_llm_prompt(image, prompt) if prompt else self.vision_llm_prompt(image)
 -         response = MultiModalConversation.call(model=self.model_name, messages=vision_prompt)
 -         if response.status_code == HTTPStatus.OK:
 -             return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
 -         return response.message, 0
 - 
 -     def chat(self, system, history, gen_conf, image=""):
 -         from http import HTTPStatus
 - 
 -         from dashscope import MultiModalConversation
 -         if system:
 -             history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 - 
 -         for his in history:
 -             if his["role"] == "user":
 -                 his["content"] = self.chat_prompt(his["content"], image)
 -         response = MultiModalConversation.call(model=self.model_name, messages=history,
 -                                                temperature=gen_conf.get("temperature", 0.3),
 -                                                top_p=gen_conf.get("top_p", 0.7))
 - 
 -         ans = ""
 -         tk_count = 0
 -         if response.status_code == HTTPStatus.OK:
 -             ans += response.output.choices[0]['message']['content']
 -             tk_count += response.usage.total_tokens
 -             if response.output.choices[0].get("finish_reason", "") == "length":
 -                 ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                     [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -             return ans, tk_count
 - 
 -         return "**ERROR**: " + response.message, tk_count
 - 
 -     def chat_streamly(self, system, history, gen_conf, image=""):
 -         from http import HTTPStatus
 - 
 -         from dashscope import MultiModalConversation
 -         if system:
 -             history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 - 
 -         for his in history:
 -             if his["role"] == "user":
 -                 his["content"] = self.chat_prompt(his["content"], image)
 - 
 -         ans = ""
 -         tk_count = 0
 -         try:
 -             response = MultiModalConversation.call(model=self.model_name, messages=history,
 -                                                    temperature=gen_conf.get("temperature", 0.3),
 -                                                    top_p=gen_conf.get("top_p", 0.7),
 -                                                    stream=True)
 -             for resp in response:
 -                 if resp.status_code == HTTPStatus.OK:
 -                     ans = resp.output.choices[0]['message']['content']
 -                     tk_count = resp.usage.total_tokens
 -                     if resp.output.choices[0].get("finish_reason", "") == "length":
 -                         ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                             [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -                     yield ans
 -                 else:
 -                     yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find(
 -                         "Access") < 0 else "Out of credit. Please set the API key in **settings > Model providers.**"
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield tk_count
 - 
 - 
 - class Zhipu4V(Base):
 -     def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
 -         self.client = ZhipuAI(api_key=key)
 -         self.model_name = model_name
 -         self.lang = lang
 - 
 -     def describe(self, image):
 -         b64 = self.image2base64(image)
 - 
 -         prompt = self.prompt(b64)
 -         prompt[0]["content"][1]["type"] = "text"
 - 
 -         res = self.client.chat.completions.create(
 -             model=self.model_name,
 -             messages=prompt,
 -         )
 -         return res.choices[0].message.content.strip(), res.usage.total_tokens
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         b64 = self.image2base64(image)
 -         vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 - 
 -         res = self.client.chat.completions.create(
 -             model=self.model_name,
 -             messages=vision_prompt
 -         )
 -         return res.choices[0].message.content.strip(), res.usage.total_tokens
 - 
 -     def chat(self, system, history, gen_conf, image=""):
 -         if system:
 -             history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 -         try:
 -             for his in history:
 -                 if his["role"] == "user":
 -                     his["content"] = self.chat_prompt(his["content"], image)
 - 
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 temperature=gen_conf.get("temperature", 0.3),
 -                 top_p=gen_conf.get("top_p", 0.7)
 -             )
 -             return response.choices[0].message.content.strip(), response.usage.total_tokens
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf, image=""):
 -         if system:
 -             history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 - 
 -         ans = ""
 -         tk_count = 0
 -         try:
 -             for his in history:
 -                 if his["role"] == "user":
 -                     his["content"] = self.chat_prompt(his["content"], image)
 - 
 -             response = self.client.chat.completions.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 temperature=gen_conf.get("temperature", 0.3),
 -                 top_p=gen_conf.get("top_p", 0.7),
 -                 stream=True
 -             )
 -             for resp in response:
 -                 if not resp.choices[0].delta.content:
 -                     continue
 -                 delta = resp.choices[0].delta.content
 -                 ans += delta
 -                 if resp.choices[0].finish_reason == "length":
 -                     ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
 -                         [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -                     tk_count = resp.usage.total_tokens
 -                 if resp.choices[0].finish_reason == "stop":
 -                     tk_count = resp.usage.total_tokens
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield tk_count
 - 
 - 
 - class OllamaCV(Base):
 -     def __init__(self, key, model_name, lang="Chinese", **kwargs):
 -         self.client = Client(host=kwargs["base_url"])
 -         self.model_name = model_name
 -         self.lang = lang
 - 
 -     def describe(self, image):
 -         prompt = self.prompt("")
 -         try:
 -             response = self.client.generate(
 -                 model=self.model_name,
 -                 prompt=prompt[0]["content"][1]["text"],
 -                 images=[image]
 -             )
 -             ans = response["response"].strip()
 -             return ans, 128
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         vision_prompt = self.vision_llm_prompt("", prompt) if prompt else self.vision_llm_prompt("")
 -         try:
 -             response = self.client.generate(
 -                 model=self.model_name,
 -                 prompt=vision_prompt[0]["content"][1]["text"],
 -                 images=[image],
 -             )
 -             ans = response["response"].strip()
 -             return ans, 128
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat(self, system, history, gen_conf, image=""):
 -         if system:
 -             history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 - 
 -         try:
 -             for his in history:
 -                 if his["role"] == "user":
 -                     his["images"] = [image]
 -             options = {}
 -             if "temperature" in gen_conf:
 -                 options["temperature"] = gen_conf["temperature"]
 -             if "top_p" in gen_conf:
 -                 options["top_k"] = gen_conf["top_p"]
 -             if "presence_penalty" in gen_conf:
 -                 options["presence_penalty"] = gen_conf["presence_penalty"]
 -             if "frequency_penalty" in gen_conf:
 -                 options["frequency_penalty"] = gen_conf["frequency_penalty"]
 -             response = self.client.chat(
 -                 model=self.model_name,
 -                 messages=history,
 -                 options=options,
 -                 keep_alive=-1
 -             )
 - 
 -             ans = response["message"]["content"].strip()
 -             return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf, image=""):
 -         if system:
 -             history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 - 
 -         for his in history:
 -             if his["role"] == "user":
 -                 his["images"] = [image]
 -         options = {}
 -         if "temperature" in gen_conf:
 -             options["temperature"] = gen_conf["temperature"]
 -         if "top_p" in gen_conf:
 -             options["top_k"] = gen_conf["top_p"]
 -         if "presence_penalty" in gen_conf:
 -             options["presence_penalty"] = gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             options["frequency_penalty"] = gen_conf["frequency_penalty"]
 -         ans = ""
 -         try:
 -             response = self.client.chat(
 -                 model=self.model_name,
 -                 messages=history,
 -                 stream=True,
 -                 options=options,
 -                 keep_alive=-1
 -             )
 -             for resp in response:
 -                 if resp["done"]:
 -                     yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
 -                 ans += resp["message"]["content"]
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 -         yield 0
 - 
 - 
 - class LocalAICV(GptV4):
 -     def __init__(self, key, model_name, base_url, lang="Chinese"):
 -         if not base_url:
 -             raise ValueError("Local cv model url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key="empty", base_url=base_url)
 -         self.model_name = model_name.split("___")[0]
 -         self.lang = lang
 - 
 - 
 - class XinferenceCV(Base):
 -     def __init__(self, key, model_name="", lang="Chinese", base_url=""):
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 -         self.lang = lang
 - 
 -     def describe(self, image):
 -         b64 = self.image2base64(image)
 - 
 -         res = self.client.chat.completions.create(
 -             model=self.model_name,
 -             messages=self.prompt(b64)
 -         )
 -         return res.choices[0].message.content.strip(), res.usage.total_tokens
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         b64 = self.image2base64(image)
 -         vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 - 
 -         res = self.client.chat.completions.create(
 -             model=self.model_name,
 -             messages=vision_prompt,
 -         )
 -         return res.choices[0].message.content.strip(), res.usage.total_tokens
 - 
 - 
 - class GeminiCV(Base):
 -     def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
 -         from google.generativeai import GenerativeModel, client
 -         client.configure(api_key=key)
 -         _client = client.get_default_generative_client()
 -         self.model_name = model_name
 -         self.model = GenerativeModel(model_name=self.model_name)
 -         self.model._client = _client
 -         self.lang = lang
 - 
 -     def describe(self, image):
 -         from PIL.Image import open
 -         prompt = "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \
 -             "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
 -         b64 = self.image2base64(image)
 -         img = open(BytesIO(base64.b64decode(b64)))
 -         input = [prompt, img]
 -         res = self.model.generate_content(
 -             input
 -         )
 -         return res.text, res.usage_metadata.total_token_count
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         from PIL.Image import open
 -         b64 = self.image2base64(image)
 -         vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 -         img = open(BytesIO(base64.b64decode(b64)))
 -         input = [vision_prompt, img]
 -         res = self.model.generate_content(
 -             input,
 -         )
 -         return res.text, res.usage_metadata.total_token_count
 - 
 -     def chat(self, system, history, gen_conf, image=""):
 -         from transformers import GenerationConfig
 -         if system:
 -             history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 -         try:
 -             for his in history:
 -                 if his["role"] == "assistant":
 -                     his["role"] = "model"
 -                     his["parts"] = [his["content"]]
 -                     his.pop("content")
 -                 if his["role"] == "user":
 -                     his["parts"] = [his["content"]]
 -                     his.pop("content")
 -             history[-1]["parts"].append("data:image/jpeg;base64," + image)
 - 
 -             response = self.model.generate_content(history, generation_config=GenerationConfig(
 -                 temperature=gen_conf.get("temperature", 0.3),
 -                 top_p=gen_conf.get("top_p", 0.7)))
 - 
 -             ans = response.text
 -             return ans, response.usage_metadata.total_token_count
 -         except Exception as e:
 -             return "**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf, image=""):
 -         from transformers import GenerationConfig
 -         if system:
 -             history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
 - 
 -         ans = ""
 -         try:
 -             for his in history:
 -                 if his["role"] == "assistant":
 -                     his["role"] = "model"
 -                     his["parts"] = [his["content"]]
 -                     his.pop("content")
 -                 if his["role"] == "user":
 -                     his["parts"] = [his["content"]]
 -                     his.pop("content")
 -             history[-1]["parts"].append("data:image/jpeg;base64," + image)
 - 
 -             response = self.model.generate_content(history, generation_config=GenerationConfig(
 -                 temperature=gen_conf.get("temperature", 0.3),
 -                 top_p=gen_conf.get("top_p", 0.7)), stream=True)
 - 
 -             for resp in response:
 -                 if not resp.text:
 -                     continue
 -                 ans += resp.text
 -                 yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield response._chunks[-1].usage_metadata.total_token_count
 - 
 - 
 - class OpenRouterCV(GptV4):
 -     def __init__(
 -         self,
 -         key,
 -         model_name,
 -         lang="Chinese",
 -         base_url="https://openrouter.ai/api/v1",
 -     ):
 -         if not base_url:
 -             base_url = "https://openrouter.ai/api/v1"
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 -         self.lang = lang
 - 
 - 
 - class LocalCV(Base):
 -     def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
 -         pass
 - 
 -     def describe(self, image):
 -         return "", 0
 - 
 - 
 - class NvidiaCV(Base):
 -     def __init__(
 -         self,
 -         key,
 -         model_name,
 -         lang="Chinese",
 -         base_url="https://ai.api.nvidia.com/v1/vlm",
 -     ):
 -         if not base_url:
 -             base_url = ("https://ai.api.nvidia.com/v1/vlm",)
 -         self.lang = lang
 -         factory, llm_name = model_name.split("/")
 -         if factory != "liuhaotian":
 -             self.base_url = os.path.join(base_url, factory, llm_name)
 -         else:
 -             self.base_url = os.path.join(
 -                 base_url, "community", llm_name.replace("-v1.6", "16")
 -             )
 -         self.key = key
 - 
 -     def describe(self, image):
 -         b64 = self.image2base64(image)
 -         response = requests.post(
 -             url=self.base_url,
 -             headers={
 -                 "accept": "application/json",
 -                 "content-type": "application/json",
 -                 "Authorization": f"Bearer {self.key}",
 -             },
 -             json={
 -                 "messages": self.prompt(b64)
 -             },
 -         )
 -         response = response.json()
 -         return (
 -             response["choices"][0]["message"]["content"].strip(),
 -             response["usage"]["total_tokens"],
 -         )
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         b64 = self.image2base64(image)
 -         vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 - 
 -         response = requests.post(
 -             url=self.base_url,
 -             headers={
 -                 "accept": "application/json",
 -                 "content-type": "application/json",
 -                 "Authorization": f"Bearer {self.key}",
 -             },
 -             json={
 -                 "messages": vision_prompt,
 -             },
 -         )
 -         response = response.json()
 -         return (
 -             response["choices"][0]["message"]["content"].strip(),
 -             response["usage"]["total_tokens"],
 -         )
 - 
 -     def prompt(self, b64):
 -         return [
 -             {
 -                 "role": "user",
 -                 "content": (
 -                     "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
 -                     if self.lang.lower() == "chinese"
 -                     else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
 -                 )
 -                 + f' <img src="data:image/jpeg;base64,{b64}"/>',
 -             }
 -         ]
 - 
 -     def vision_llm_prompt(self, b64, prompt=None):
 -         return [
 -             {
 -                 "role": "user",
 -                 "content": (
 -                     prompt if prompt else vision_llm_describe_prompt()
 -                 )
 -                 + f' <img src="data:image/jpeg;base64,{b64}"/>',
 -             }
 -         ]
 - 
 -     def chat_prompt(self, text, b64):
 -         return [
 -             {
 -                 "role": "user",
 -                 "content": text + f' <img src="data:image/jpeg;base64,{b64}"/>',
 -             }
 -         ]
 - 
 - 
 - class StepFunCV(GptV4):
 -     def __init__(self, key, model_name="step-1v-8k", lang="Chinese", base_url="https://api.stepfun.com/v1"):
 -         if not base_url:
 -             base_url = "https://api.stepfun.com/v1"
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 -         self.lang = lang
 - 
 - 
 - class LmStudioCV(GptV4):
 -     def __init__(self, key, model_name, lang="Chinese", base_url=""):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key="lm-studio", base_url=base_url)
 -         self.model_name = model_name
 -         self.lang = lang
 - 
 - 
 - class OpenAI_APICV(GptV4):
 -     def __init__(self, key, model_name, lang="Chinese", base_url=""):
 -         if not base_url:
 -             raise ValueError("url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name.split("___")[0]
 -         self.lang = lang
 - 
 - 
 - class TogetherAICV(GptV4):
 -     def __init__(self, key, model_name, lang="Chinese", base_url="https://api.together.xyz/v1"):
 -         if not base_url:
 -             base_url = "https://api.together.xyz/v1"
 -         super().__init__(key, model_name, lang, base_url)
 - 
 - 
 - class YiCV(GptV4):
 -     def __init__(self, key, model_name, lang="Chinese", base_url="https://api.lingyiwanwu.com/v1",):
 -         if not base_url:
 -             base_url = "https://api.lingyiwanwu.com/v1"
 -         super().__init__(key, model_name, lang, base_url)
 - 
 - 
 - class SILICONFLOWCV(GptV4):
 -     def __init__(self, key, model_name, lang="Chinese", base_url="https://api.siliconflow.cn/v1",):
 -         if not base_url:
 -             base_url = "https://api.siliconflow.cn/v1"
 -         super().__init__(key, model_name, lang, base_url)
 - 
 - 
 - class HunyuanCV(Base):
 -     def __init__(self, key, model_name, lang="Chinese", base_url=None):
 -         from tencentcloud.common import credential
 -         from tencentcloud.hunyuan.v20230901 import hunyuan_client
 - 
 -         key = json.loads(key)
 -         sid = key.get("hunyuan_sid", "")
 -         sk = key.get("hunyuan_sk", "")
 -         cred = credential.Credential(sid, sk)
 -         self.model_name = model_name
 -         self.client = hunyuan_client.HunyuanClient(cred, "")
 -         self.lang = lang
 - 
 -     def describe(self, image):
 -         from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
 -             TencentCloudSDKException,
 -         )
 -         from tencentcloud.hunyuan.v20230901 import models
 - 
 -         b64 = self.image2base64(image)
 -         req = models.ChatCompletionsRequest()
 -         params = {"Model": self.model_name, "Messages": self.prompt(b64)}
 -         req.from_json_string(json.dumps(params))
 -         ans = ""
 -         try:
 -             response = self.client.ChatCompletions(req)
 -             ans = response.Choices[0].Message.Content
 -             return ans, response.Usage.TotalTokens
 -         except TencentCloudSDKException as e:
 -             return ans + "\n**ERROR**: " + str(e), 0
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException
 -         from tencentcloud.hunyuan.v20230901 import models
 - 
 -         b64 = self.image2base64(image)
 -         vision_prompt = self.vision_llm_prompt(b64, prompt) if prompt else self.vision_llm_prompt(b64)
 -         req = models.ChatCompletionsRequest()
 -         params = {"Model": self.model_name, "Messages": vision_prompt}
 -         req.from_json_string(json.dumps(params))
 -         ans = ""
 -         try:
 -             response = self.client.ChatCompletions(req)
 -             ans = response.Choices[0].Message.Content
 -             return ans, response.Usage.TotalTokens
 -         except TencentCloudSDKException as e:
 -             return ans + "\n**ERROR**: " + str(e), 0
 - 
 -     def prompt(self, b64):
 -         return [
 -             {
 -                 "Role": "user",
 -                 "Contents": [
 -                     {
 -                         "Type": "image_url",
 -                         "ImageUrl": {
 -                             "Url": f"data:image/jpeg;base64,{b64}"
 -                         },
 -                     },
 -                     {
 -                         "Type": "text",
 -                         "Text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
 -                         "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
 -                     },
 -                 ],
 -             }
 -         ]
 - 
 - 
 - class AnthropicCV(Base):
 -     def __init__(self, key, model_name, base_url=None):
 -         import anthropic
 - 
 -         self.client = anthropic.Anthropic(api_key=key)
 -         self.model_name = model_name
 -         self.system = ""
 -         self.max_tokens = 8192
 -         if "haiku" in self.model_name or "opus" in self.model_name:
 -             self.max_tokens = 4096
 - 
 -     def prompt(self, b64, prompt):
 -         return [
 -             {
 -                 "role": "user",
 -                 "content": [
 -                     {
 -                         "type": "image",
 -                         "source": {
 -                             "type": "base64",
 -                             "media_type": "image/jpeg",
 -                             "data": b64,
 -                         },
 -                     },
 -                     {
 -                         "type": "text",
 -                         "text": prompt
 -                     }
 -                 ],
 -             }
 -         ]
 - 
 -     def describe(self, image):
 -         b64 = self.image2base64(image)
 -         prompt = self.prompt(b64,
 -                              "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
 -                              "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
 -                              )
 - 
 -         response = self.client.messages.create(
 -             model=self.model_name,
 -             max_tokens=self.max_tokens,
 -             messages=prompt
 -         )
 -         return response["content"][0]["text"].strip(), response["usage"]["input_tokens"]+response["usage"]["output_tokens"]
 - 
 -     def describe_with_prompt(self, image, prompt=None):
 -         b64 = self.image2base64(image)
 -         prompt = self.prompt(b64, prompt if prompt else vision_llm_describe_prompt())
 - 
 -         response = self.client.messages.create(
 -             model=self.model_name,
 -             max_tokens=self.max_tokens,
 -             messages=prompt
 -         )
 -         return response["content"][0]["text"].strip(), response["usage"]["input_tokens"]+response["usage"]["output_tokens"]
 - 
 -     def chat(self, system, history, gen_conf):
 -         if "presence_penalty" in gen_conf:
 -             del gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             del gen_conf["frequency_penalty"]
 -         gen_conf["max_tokens"] = self.max_tokens
 - 
 -         ans = ""
 -         try:
 -             response = self.client.messages.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 system=system,
 -                 stream=False,
 -                 **gen_conf,
 -             ).to_dict()
 -             ans = response["content"][0]["text"]
 -             if response["stop_reason"] == "max_tokens":
 -                 ans += (
 -                     "...\nFor the content length reason, it stopped, continue?"
 -                     if is_english([ans])
 -                     else "······\n由于长度的原因,回答被截断了,要继续吗?"
 -                 )
 -             return (
 -                 ans,
 -                 response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
 -             )
 -         except Exception as e:
 -             return ans + "\n**ERROR**: " + str(e), 0
 - 
 -     def chat_streamly(self, system, history, gen_conf):
 -         if "presence_penalty" in gen_conf:
 -             del gen_conf["presence_penalty"]
 -         if "frequency_penalty" in gen_conf:
 -             del gen_conf["frequency_penalty"]
 -         gen_conf["max_tokens"] = self.max_tokens
 - 
 -         ans = ""
 -         total_tokens = 0
 -         try:
 -             response = self.client.messages.create(
 -                 model=self.model_name,
 -                 messages=history,
 -                 system=system,
 -                 stream=True,
 -                 **gen_conf,
 -             )
 -             for res in response:
 -                 if res.type == 'content_block_delta':
 -                     if res.delta.type == "thinking_delta" and res.delta.thinking:
 -                         if ans.find("<think>") < 0:
 -                             ans += "<think>"
 -                         ans = ans.replace("</think>", "")
 -                         ans += res.delta.thinking + "</think>"
 -                     else:
 -                         text = res.delta.text
 -                         ans += text
 -                         total_tokens += num_tokens_from_string(text)
 -                     yield ans
 -         except Exception as e:
 -             yield ans + "\n**ERROR**: " + str(e)
 - 
 -         yield total_tokens
 - 
 - class GPUStackCV(GptV4):
 -     def __init__(self, key, model_name, lang="Chinese", base_url=""):
 -         if not base_url:
 -             raise ValueError("Local llm url cannot be None")
 -         if base_url.split("/")[-1] != "v1":
 -             base_url = os.path.join(base_url, "v1")
 -         self.client = OpenAI(api_key=key, base_url=base_url)
 -         self.model_name = model_name
 -         self.lang = lang
 
 
  |