- #
 - #  Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
 - #
 - #  Licensed under the Apache License, Version 2.0 (the "License");
 - #  you may not use this file except in compliance with the License.
 - #  You may obtain a copy of the License at
 - #
 - #      http://www.apache.org/licenses/LICENSE-2.0
 - #
 - #  Unless required by applicable law or agreed to in writing, software
 - #  distributed under the License is distributed on an "AS IS" BASIS,
 - #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 - #  See the License for the specific language governing permissions and
 - #  limitations under the License.
 - #
 - 
 - import logging
 - from tika import parser
 - from io import BytesIO
 - import re
 - 
 - from deepdoc.parser.utils import get_text
 - from rag.app import naive
 - from rag.nlp import rag_tokenizer, tokenize
 - from deepdoc.parser import PdfParser, ExcelParser, PlainParser, HtmlParser
 - 
 - 
 - class Pdf(PdfParser):
 -     def __call__(self, filename, binary=None, from_page=0,
 -                  to_page=100000, zoomin=3, callback=None):
 -         from timeit import default_timer as timer
 -         start = timer()
 -         callback(msg="OCR started")
 -         self.__images__(
 -             filename if not binary else binary,
 -             zoomin,
 -             from_page,
 -             to_page,
 -             callback
 -         )
 -         callback(msg="OCR finished ({:.2f}s)".format(timer() - start))
 - 
 -         start = timer()
 -         self._layouts_rec(zoomin, drop=False)
 -         callback(0.63, "Layout analysis ({:.2f}s)".format(timer() - start))
 -         logging.debug("layouts cost: {}s".format(timer() - start))
 - 
 -         start = timer()
 -         self._table_transformer_job(zoomin)
 -         callback(0.65, "Table analysis ({:.2f}s)".format(timer() - start))
 - 
 -         start = timer()
 -         self._text_merge()
 -         callback(0.67, "Text merged ({:.2f}s)".format(timer() - start))
 -         tbls = self._extract_table_figure(True, zoomin, True, True)
 -         self._concat_downward()
 - 
 -         sections = [(b["text"], self.get_position(b, zoomin))
 -                     for i, b in enumerate(self.boxes)]
 -         for (img, rows), poss in tbls:
 -             if not rows:
 -                 continue
 -             sections.append((rows if isinstance(rows, str) else rows[0],
 -                              [(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
 -         return [(txt, "") for txt, _ in sorted(sections, key=lambda x: (
 -             x[-1][0][0], x[-1][0][3], x[-1][0][1]))], None
 - 
 - 
 - def chunk(filename, binary=None, from_page=0, to_page=100000,
 -           lang="Chinese", callback=None, **kwargs):
 -     """
 -         Supported file formats are docx, pdf, excel, txt.
 -         One file forms a chunk which maintains original text order.
 -     """
 - 
 -     eng = lang.lower() == "english"  # is_english(cks)
 - 
 -     if re.search(r"\.docx$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         sections, tbls = naive.Docx()(filename, binary)
 -         sections = [s for s, _ in sections if s]
 -         for (_, html), _ in tbls:
 -             sections.append(html)
 -         callback(0.8, "Finish parsing.")
 - 
 -     elif re.search(r"\.pdf$", filename, re.IGNORECASE):
 -         pdf_parser = Pdf()
 -         if kwargs.get("layout_recognize", "DeepDOC") == "Plain Text":
 -             pdf_parser = PlainParser()
 -         sections, _ = pdf_parser(
 -             filename if not binary else binary, to_page=to_page, callback=callback)
 -         sections = [s for s, _ in sections if s]
 - 
 -     elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         excel_parser = ExcelParser()
 -         sections = excel_parser.html(binary, 1000000000)
 - 
 -     elif re.search(r"\.(txt|md|markdown)$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         txt = get_text(filename, binary)
 -         sections = txt.split("\n")
 -         sections = [s for s in sections if s]
 -         callback(0.8, "Finish parsing.")
 - 
 -     elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         sections = HtmlParser()(filename, binary)
 -         sections = [s for s in sections if s]
 -         callback(0.8, "Finish parsing.")
 - 
 -     elif re.search(r"\.doc$", filename, re.IGNORECASE):
 -         callback(0.1, "Start to parse.")
 -         binary = BytesIO(binary)
 -         doc_parsed = parser.from_buffer(binary)
 -         sections = doc_parsed['content'].split('\n')
 -         sections = [s for s in sections if s]
 -         callback(0.8, "Finish parsing.")
 - 
 -     else:
 -         raise NotImplementedError(
 -             "file type not supported yet(doc, docx, pdf, txt supported)")
 - 
 -     doc = {
 -         "docnm_kwd": filename,
 -         "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
 -     }
 -     doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
 -     tokenize(doc, "\n".join(sections), eng)
 -     return [doc]
 - 
 - 
 - if __name__ == "__main__":
 -     import sys
 - 
 -     def dummy(prog=None, msg=""):
 -         pass
 - 
 -     chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
 
 
  |