- #
- # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import json
- import os
- import sys
- import time
- import argparse
- from collections import defaultdict
-
- from api.db import LLMType
- from api.db.services.llm_service import LLMBundle
- from api.db.services.knowledgebase_service import KnowledgebaseService
- from api import settings
- from api.utils import get_uuid
- from rag.nlp import tokenize, search
- from ranx import evaluate
- from ranx import Qrels, Run
- import pandas as pd
- from tqdm import tqdm
-
- global max_docs
- max_docs = sys.maxsize
-
-
- class Benchmark:
- def __init__(self, kb_id):
- self.kb_id = kb_id
- e, self.kb = KnowledgebaseService.get_by_id(kb_id)
- self.similarity_threshold = self.kb.similarity_threshold
- self.vector_similarity_weight = self.kb.vector_similarity_weight
- self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language)
- self.tenant_id = ''
- self.index_name = ''
- self.initialized_index = False
-
- def _get_retrieval(self, qrels):
- # Need to wait for the ES and Infinity index to be ready
- time.sleep(20)
- run = defaultdict(dict)
- query_list = list(qrels.keys())
- for query in query_list:
- ranks = settings.retrievaler.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30,
- 0.0, self.vector_similarity_weight)
- if len(ranks["chunks"]) == 0:
- print(f"deleted query: {query}")
- del qrels[query]
- continue
- for c in ranks["chunks"]:
- c.pop("vector", None)
- run[query][c["chunk_id"]] = c["similarity"]
- return run
-
- def embedding(self, docs):
- texts = [d["content_with_weight"] for d in docs]
- embeddings, _ = self.embd_mdl.encode(texts)
- assert len(docs) == len(embeddings)
- vector_size = 0
- for i, d in enumerate(docs):
- v = embeddings[i]
- vector_size = len(v)
- d["q_%d_vec" % len(v)] = v
- return docs, vector_size
-
- def init_index(self, vector_size: int):
- if self.initialized_index:
- return
- if settings.docStoreConn.indexExist(self.index_name, self.kb_id):
- settings.docStoreConn.deleteIdx(self.index_name, self.kb_id)
- settings.docStoreConn.createIdx(self.index_name, self.kb_id, vector_size)
- self.initialized_index = True
-
- def ms_marco_index(self, file_path, index_name):
- qrels = defaultdict(dict)
- texts = defaultdict(dict)
- docs_count = 0
- docs = []
- filelist = sorted(os.listdir(file_path))
-
- for fn in filelist:
- if docs_count >= max_docs:
- break
- if not fn.endswith(".parquet"):
- continue
- data = pd.read_parquet(os.path.join(file_path, fn))
- for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + fn):
- if docs_count >= max_docs:
- break
- query = data.iloc[i]['query']
- for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
- d = {
- "id": get_uuid(),
- "kb_id": self.kb.id,
- "docnm_kwd": "xxxxx",
- "doc_id": "ksksks"
- }
- tokenize(d, text, "english")
- docs.append(d)
- texts[d["id"]] = text
- qrels[query][d["id"]] = int(rel)
- if len(docs) >= 32:
- docs_count += len(docs)
- docs, vector_size = self.embedding(docs)
- self.init_index(vector_size)
- settings.docStoreConn.insert(docs, self.index_name, self.kb_id)
- docs = []
-
- if docs:
- docs, vector_size = self.embedding(docs)
- self.init_index(vector_size)
- settings.docStoreConn.insert(docs, self.index_name, self.kb_id)
- return qrels, texts
-
- def trivia_qa_index(self, file_path, index_name):
- qrels = defaultdict(dict)
- texts = defaultdict(dict)
- docs_count = 0
- docs = []
- filelist = sorted(os.listdir(file_path))
- for fn in filelist:
- if docs_count >= max_docs:
- break
- if not fn.endswith(".parquet"):
- continue
- data = pd.read_parquet(os.path.join(file_path, fn))
- for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + fn):
- if docs_count >= max_docs:
- break
- query = data.iloc[i]['question']
- for rel, text in zip(data.iloc[i]["search_results"]['rank'],
- data.iloc[i]["search_results"]['search_context']):
- d = {
- "id": get_uuid(),
- "kb_id": self.kb.id,
- "docnm_kwd": "xxxxx",
- "doc_id": "ksksks"
- }
- tokenize(d, text, "english")
- docs.append(d)
- texts[d["id"]] = text
- qrels[query][d["id"]] = int(rel)
- if len(docs) >= 32:
- docs_count += len(docs)
- docs, vector_size = self.embedding(docs)
- self.init_index(vector_size)
- settings.docStoreConn.insert(docs,self.index_name)
- docs = []
-
- docs, vector_size = self.embedding(docs)
- self.init_index(vector_size)
- settings.docStoreConn.insert(docs, self.index_name)
- return qrels, texts
-
- def miracl_index(self, file_path, corpus_path, index_name):
- corpus_total = {}
- for corpus_file in os.listdir(corpus_path):
- tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
- for index, i in tmp_data.iterrows():
- corpus_total[i['docid']] = i['text']
-
- topics_total = {}
- for topics_file in os.listdir(os.path.join(file_path, 'topics')):
- if 'test' in topics_file:
- continue
- tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
- for index, i in tmp_data.iterrows():
- topics_total[i['qid']] = i['query']
-
- qrels = defaultdict(dict)
- texts = defaultdict(dict)
- docs_count = 0
- docs = []
- for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
- if 'test' in qrels_file:
- continue
- if docs_count >= max_docs:
- break
-
- tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
- names=['qid', 'Q0', 'docid', 'relevance'])
- for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
- if docs_count >= max_docs:
- break
- query = topics_total[tmp_data.iloc[i]['qid']]
- text = corpus_total[tmp_data.iloc[i]['docid']]
- rel = tmp_data.iloc[i]['relevance']
- d = {
- "id": get_uuid(),
- "kb_id": self.kb.id,
- "docnm_kwd": "xxxxx",
- "doc_id": "ksksks"
- }
- tokenize(d, text, 'english')
- docs.append(d)
- texts[d["id"]] = text
- qrels[query][d["id"]] = int(rel)
- if len(docs) >= 32:
- docs_count += len(docs)
- docs, vector_size = self.embedding(docs)
- self.init_index(vector_size)
- settings.docStoreConn.insert(docs, self.index_name)
- docs = []
-
- docs, vector_size = self.embedding(docs)
- self.init_index(vector_size)
- settings.docStoreConn.insert(docs, self.index_name)
- return qrels, texts
-
- def save_results(self, qrels, run, texts, dataset, file_path):
- keep_result = []
- run_keys = list(run.keys())
- for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
- key = run_keys[run_i]
- keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
- 'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
- keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
- with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
- f.write('## Score For Every Query\n')
- for keep_result_i in keep_result:
- f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
- scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
- scores = sorted(scores, key=lambda kk: kk[1])
- for score in scores[:10]:
- f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
- json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+", encoding='utf-8'), indent=2)
- json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+", encoding='utf-8'), indent=2)
- print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
-
- def __call__(self, dataset, file_path, miracl_corpus=''):
- if dataset == "ms_marco_v1.1":
- self.tenant_id = "benchmark_ms_marco_v11"
- self.index_name = search.index_name(self.tenant_id)
- qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
- run = self._get_retrieval(qrels)
- print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"]))
- self.save_results(qrels, run, texts, dataset, file_path)
- if dataset == "trivia_qa":
- self.tenant_id = "benchmark_trivia_qa"
- self.index_name = search.index_name(self.tenant_id)
- qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
- run = self._get_retrieval(qrels)
- print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"]))
- self.save_results(qrels, run, texts, dataset, file_path)
- if dataset == "miracl":
- for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
- 'yo', 'zh']:
- if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
- print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
- continue
- if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
- print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
- continue
- if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
- print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
- continue
- if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
- print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
- continue
- self.tenant_id = "benchmark_miracl_" + lang
- self.index_name = search.index_name(self.tenant_id)
- self.initialized_index = False
- qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
- os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
- "benchmark_miracl_" + lang)
- run = self._get_retrieval(qrels)
- print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"]))
- self.save_results(qrels, run, texts, dataset, file_path)
-
-
- if __name__ == '__main__':
- print('*****************RAGFlow Benchmark*****************')
- parser = argparse.ArgumentParser(usage="benchmark.py <max_docs> <kb_id> <dataset> <dataset_path> [<miracl_corpus_path>])", description='RAGFlow Benchmark')
- parser.add_argument('max_docs', metavar='max_docs', type=int, help='max docs to evaluate')
- parser.add_argument('kb_id', metavar='kb_id', help='knowledgebase id')
- parser.add_argument('dataset', metavar='dataset', help='dataset name, shall be one of ms_marco_v1.1(https://huggingface.co/datasets/microsoft/ms_marco), trivia_qa(https://huggingface.co/datasets/mandarjoshi/trivia_qa>), miracl(https://huggingface.co/datasets/miracl/miracl')
- parser.add_argument('dataset_path', metavar='dataset_path', help='dataset path')
- parser.add_argument('miracl_corpus_path', metavar='miracl_corpus_path', nargs='?', default="", help='miracl corpus path. Only needed when dataset is miracl')
-
- args = parser.parse_args()
- max_docs = args.max_docs
- kb_id = args.kb_id
- ex = Benchmark(kb_id)
-
- dataset = args.dataset
- dataset_path = args.dataset_path
-
- if dataset == "ms_marco_v1.1" or dataset == "trivia_qa":
- ex(dataset, dataset_path)
- elif dataset == "miracl":
- if len(args) < 5:
- print('Please input the correct parameters!')
- exit(1)
- miracl_corpus_path = args[4]
- ex(dataset, dataset_path, miracl_corpus=args.miracl_corpus_path)
- else:
- print("Dataset: ", dataset, "not supported!")
|