| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878 | 
							- import concurrent.futures
 - import datetime
 - import json
 - import logging
 - import re
 - import threading
 - import time
 - import uuid
 - from typing import Optional, cast
 - 
 - from flask import Flask, current_app
 - from flask_login import current_user
 - from sqlalchemy.orm.exc import ObjectDeletedError
 - 
 - from configs import dify_config
 - from core.errors.error import ProviderTokenNotInitError
 - from core.llm_generator.llm_generator import LLMGenerator
 - from core.model_manager import ModelInstance, ModelManager
 - from core.model_runtime.entities.model_entities import ModelType, PriceType
 - from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
 - from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
 - from core.rag.datasource.keyword.keyword_factory import Keyword
 - from core.rag.docstore.dataset_docstore import DatasetDocumentStore
 - from core.rag.extractor.entity.extract_setting import ExtractSetting
 - from core.rag.index_processor.index_processor_base import BaseIndexProcessor
 - from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 - from core.rag.models.document import Document
 - from core.rag.splitter.fixed_text_splitter import (
 -     EnhanceRecursiveCharacterTextSplitter,
 -     FixedRecursiveCharacterTextSplitter,
 - )
 - from core.rag.splitter.text_splitter import TextSplitter
 - from extensions.ext_database import db
 - from extensions.ext_redis import redis_client
 - from extensions.ext_storage import storage
 - from libs import helper
 - from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
 - from models.dataset import Document as DatasetDocument
 - from models.model import UploadFile
 - from services.feature_service import FeatureService
 - 
 - 
 - class IndexingRunner:
 - 
 -     def __init__(self):
 -         self.storage = storage
 -         self.model_manager = ModelManager()
 - 
 -     def run(self, dataset_documents: list[DatasetDocument]):
 -         """Run the indexing process."""
 -         for dataset_document in dataset_documents:
 -             try:
 -                 # get dataset
 -                 dataset = Dataset.query.filter_by(
 -                     id=dataset_document.dataset_id
 -                 ).first()
 - 
 -                 if not dataset:
 -                     raise ValueError("no dataset found")
 - 
 -                 # get the process rule
 -                 processing_rule = db.session.query(DatasetProcessRule). \
 -                     filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 -                     first()
 -                 index_type = dataset_document.doc_form
 -                 index_processor = IndexProcessorFactory(index_type).init_index_processor()
 -                 # extract
 -                 text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
 - 
 -                 # transform
 -                 documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
 -                                             processing_rule.to_dict())
 -                 # save segment
 -                 self._load_segments(dataset, dataset_document, documents)
 - 
 -                 # load
 -                 self._load(
 -                     index_processor=index_processor,
 -                     dataset=dataset,
 -                     dataset_document=dataset_document,
 -                     documents=documents
 -                 )
 -             except DocumentIsPausedException:
 -                 raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 -             except ProviderTokenNotInitError as e:
 -                 dataset_document.indexing_status = 'error'
 -                 dataset_document.error = str(e.description)
 -                 dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -                 db.session.commit()
 -             except ObjectDeletedError:
 -                 logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
 -             except Exception as e:
 -                 logging.exception("consume document failed")
 -                 dataset_document.indexing_status = 'error'
 -                 dataset_document.error = str(e)
 -                 dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -                 db.session.commit()
 - 
 -     def run_in_splitting_status(self, dataset_document: DatasetDocument):
 -         """Run the indexing process when the index_status is splitting."""
 -         try:
 -             # get dataset
 -             dataset = Dataset.query.filter_by(
 -                 id=dataset_document.dataset_id
 -             ).first()
 - 
 -             if not dataset:
 -                 raise ValueError("no dataset found")
 - 
 -             # get exist document_segment list and delete
 -             document_segments = DocumentSegment.query.filter_by(
 -                 dataset_id=dataset.id,
 -                 document_id=dataset_document.id
 -             ).all()
 - 
 -             for document_segment in document_segments:
 -                 db.session.delete(document_segment)
 -             db.session.commit()
 -             # get the process rule
 -             processing_rule = db.session.query(DatasetProcessRule). \
 -                 filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 -                 first()
 - 
 -             index_type = dataset_document.doc_form
 -             index_processor = IndexProcessorFactory(index_type).init_index_processor()
 -             # extract
 -             text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
 - 
 -             # transform
 -             documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
 -                                         processing_rule.to_dict())
 -             # save segment
 -             self._load_segments(dataset, dataset_document, documents)
 - 
 -             # load
 -             self._load(
 -                 index_processor=index_processor,
 -                 dataset=dataset,
 -                 dataset_document=dataset_document,
 -                 documents=documents
 -             )
 -         except DocumentIsPausedException:
 -             raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 -         except ProviderTokenNotInitError as e:
 -             dataset_document.indexing_status = 'error'
 -             dataset_document.error = str(e.description)
 -             dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -             db.session.commit()
 -         except Exception as e:
 -             logging.exception("consume document failed")
 -             dataset_document.indexing_status = 'error'
 -             dataset_document.error = str(e)
 -             dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -             db.session.commit()
 - 
 -     def run_in_indexing_status(self, dataset_document: DatasetDocument):
 -         """Run the indexing process when the index_status is indexing."""
 -         try:
 -             # get dataset
 -             dataset = Dataset.query.filter_by(
 -                 id=dataset_document.dataset_id
 -             ).first()
 - 
 -             if not dataset:
 -                 raise ValueError("no dataset found")
 - 
 -             # get exist document_segment list and delete
 -             document_segments = DocumentSegment.query.filter_by(
 -                 dataset_id=dataset.id,
 -                 document_id=dataset_document.id
 -             ).all()
 - 
 -             documents = []
 -             if document_segments:
 -                 for document_segment in document_segments:
 -                     # transform segment to node
 -                     if document_segment.status != "completed":
 -                         document = Document(
 -                             page_content=document_segment.content,
 -                             metadata={
 -                                 "doc_id": document_segment.index_node_id,
 -                                 "doc_hash": document_segment.index_node_hash,
 -                                 "document_id": document_segment.document_id,
 -                                 "dataset_id": document_segment.dataset_id,
 -                             }
 -                         )
 - 
 -                         documents.append(document)
 - 
 -             # build index
 -             # get the process rule
 -             processing_rule = db.session.query(DatasetProcessRule). \
 -                 filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 -                 first()
 - 
 -             index_type = dataset_document.doc_form
 -             index_processor = IndexProcessorFactory(index_type).init_index_processor()
 -             self._load(
 -                 index_processor=index_processor,
 -                 dataset=dataset,
 -                 dataset_document=dataset_document,
 -                 documents=documents
 -             )
 -         except DocumentIsPausedException:
 -             raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 -         except ProviderTokenNotInitError as e:
 -             dataset_document.indexing_status = 'error'
 -             dataset_document.error = str(e.description)
 -             dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -             db.session.commit()
 -         except Exception as e:
 -             logging.exception("consume document failed")
 -             dataset_document.indexing_status = 'error'
 -             dataset_document.error = str(e)
 -             dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -             db.session.commit()
 - 
 -     def indexing_estimate(self, tenant_id: str, extract_settings: list[ExtractSetting], tmp_processing_rule: dict,
 -                           doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
 -                           indexing_technique: str = 'economy') -> dict:
 -         """
 -         Estimate the indexing for the document.
 -         """
 -         # check document limit
 -         features = FeatureService.get_features(tenant_id)
 -         if features.billing.enabled:
 -             count = len(extract_settings)
 -             batch_upload_limit = dify_config.BATCH_UPLOAD_LIMIT
 -             if count > batch_upload_limit:
 -                 raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 - 
 -         embedding_model_instance = None
 -         if dataset_id:
 -             dataset = Dataset.query.filter_by(
 -                 id=dataset_id
 -             ).first()
 -             if not dataset:
 -                 raise ValueError('Dataset not found.')
 -             if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
 -                 if dataset.embedding_model_provider:
 -                     embedding_model_instance = self.model_manager.get_model_instance(
 -                         tenant_id=tenant_id,
 -                         provider=dataset.embedding_model_provider,
 -                         model_type=ModelType.TEXT_EMBEDDING,
 -                         model=dataset.embedding_model
 -                     )
 -                 else:
 -                     embedding_model_instance = self.model_manager.get_default_model_instance(
 -                         tenant_id=tenant_id,
 -                         model_type=ModelType.TEXT_EMBEDDING,
 -                     )
 -         else:
 -             if indexing_technique == 'high_quality':
 -                 embedding_model_instance = self.model_manager.get_default_model_instance(
 -                     tenant_id=tenant_id,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                 )
 -         tokens = 0
 -         preview_texts = []
 -         total_segments = 0
 -         total_price = 0
 -         currency = 'USD'
 -         index_type = doc_form
 -         index_processor = IndexProcessorFactory(index_type).init_index_processor()
 -         all_text_docs = []
 -         for extract_setting in extract_settings:
 -             # extract
 -             text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
 -             all_text_docs.extend(text_docs)
 -             processing_rule = DatasetProcessRule(
 -                 mode=tmp_processing_rule["mode"],
 -                 rules=json.dumps(tmp_processing_rule["rules"])
 -             )
 - 
 -             # get splitter
 -             splitter = self._get_splitter(processing_rule, embedding_model_instance)
 - 
 -             # split to documents
 -             documents = self._split_to_documents_for_estimate(
 -                 text_docs=text_docs,
 -                 splitter=splitter,
 -                 processing_rule=processing_rule
 -             )
 - 
 -             total_segments += len(documents)
 -             for document in documents:
 -                 if len(preview_texts) < 5:
 -                     preview_texts.append(document.page_content)
 -                 if indexing_technique == 'high_quality' or embedding_model_instance:
 -                     tokens += embedding_model_instance.get_text_embedding_num_tokens(
 -                         texts=[self.filter_string(document.page_content)]
 -                     )
 - 
 -         if doc_form and doc_form == 'qa_model':
 -             model_instance = self.model_manager.get_default_model_instance(
 -                 tenant_id=tenant_id,
 -                 model_type=ModelType.LLM
 -             )
 - 
 -             model_type_instance = model_instance.model_type_instance
 -             model_type_instance = cast(LargeLanguageModel, model_type_instance)
 - 
 -             if len(preview_texts) > 0:
 -                 # qa model document
 -                 response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
 -                                                              doc_language)
 -                 document_qa_list = self.format_split_text(response)
 -                 price_info = model_type_instance.get_price(
 -                     model=model_instance.model,
 -                     credentials=model_instance.credentials,
 -                     price_type=PriceType.INPUT,
 -                     tokens=total_segments * 2000,
 -                 )
 -                 return {
 -                     "total_segments": total_segments * 20,
 -                     "tokens": total_segments * 2000,
 -                     "total_price": '{:f}'.format(price_info.total_amount),
 -                     "currency": price_info.currency,
 -                     "qa_preview": document_qa_list,
 -                     "preview": preview_texts
 -                 }
 -         if embedding_model_instance:
 -             embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
 -             embedding_price_info = embedding_model_type_instance.get_price(
 -                 model=embedding_model_instance.model,
 -                 credentials=embedding_model_instance.credentials,
 -                 price_type=PriceType.INPUT,
 -                 tokens=tokens
 -             )
 -             total_price = '{:f}'.format(embedding_price_info.total_amount)
 -             currency = embedding_price_info.currency
 -         return {
 -             "total_segments": total_segments,
 -             "tokens": tokens,
 -             "total_price": total_price,
 -             "currency": currency,
 -             "preview": preview_texts
 -         }
 - 
 -     def _extract(self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict) \
 -             -> list[Document]:
 -         # load file
 -         if dataset_document.data_source_type not in ["upload_file", "notion_import", "website_crawl"]:
 -             return []
 - 
 -         data_source_info = dataset_document.data_source_info_dict
 -         text_docs = []
 -         if dataset_document.data_source_type == 'upload_file':
 -             if not data_source_info or 'upload_file_id' not in data_source_info:
 -                 raise ValueError("no upload file found")
 - 
 -             file_detail = db.session.query(UploadFile). \
 -                 filter(UploadFile.id == data_source_info['upload_file_id']). \
 -                 one_or_none()
 - 
 -             if file_detail:
 -                 extract_setting = ExtractSetting(
 -                     datasource_type="upload_file",
 -                     upload_file=file_detail,
 -                     document_model=dataset_document.doc_form
 -                 )
 -                 text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
 -         elif dataset_document.data_source_type == 'notion_import':
 -             if (not data_source_info or 'notion_workspace_id' not in data_source_info
 -                     or 'notion_page_id' not in data_source_info):
 -                 raise ValueError("no notion import info found")
 -             extract_setting = ExtractSetting(
 -                 datasource_type="notion_import",
 -                 notion_info={
 -                     "notion_workspace_id": data_source_info['notion_workspace_id'],
 -                     "notion_obj_id": data_source_info['notion_page_id'],
 -                     "notion_page_type": data_source_info['type'],
 -                     "document": dataset_document,
 -                     "tenant_id": dataset_document.tenant_id
 -                 },
 -                 document_model=dataset_document.doc_form
 -             )
 -             text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
 -         elif dataset_document.data_source_type == 'website_crawl':
 -             if (not data_source_info or 'provider' not in data_source_info
 -                     or 'url' not in data_source_info or 'job_id' not in data_source_info):
 -                 raise ValueError("no website import info found")
 -             extract_setting = ExtractSetting(
 -                 datasource_type="website_crawl",
 -                 website_info={
 -                     "provider": data_source_info['provider'],
 -                     "job_id": data_source_info['job_id'],
 -                     "tenant_id": dataset_document.tenant_id,
 -                     "url": data_source_info['url'],
 -                     "mode": data_source_info['mode'],
 -                     "only_main_content": data_source_info['only_main_content']
 -                 },
 -                 document_model=dataset_document.doc_form
 -             )
 -             text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
 -         # update document status to splitting
 -         self._update_document_index_status(
 -             document_id=dataset_document.id,
 -             after_indexing_status="splitting",
 -             extra_update_params={
 -                 DatasetDocument.word_count: sum(len(text_doc.page_content) for text_doc in text_docs),
 -                 DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -             }
 -         )
 - 
 -         # replace doc id to document model id
 -         text_docs = cast(list[Document], text_docs)
 -         for text_doc in text_docs:
 -             text_doc.metadata['document_id'] = dataset_document.id
 -             text_doc.metadata['dataset_id'] = dataset_document.dataset_id
 - 
 -         return text_docs
 - 
 -     def filter_string(self, text):
 -         text = re.sub(r'<\|', '<', text)
 -         text = re.sub(r'\|>', '>', text)
 -         text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]', '', text)
 -         # Unicode  U+FFFE
 -         text = re.sub('\uFFFE', '', text)
 -         return text
 - 
 -     def _get_splitter(self, processing_rule: DatasetProcessRule,
 -                       embedding_model_instance: Optional[ModelInstance]) -> TextSplitter:
 -         """
 -         Get the NodeParser object according to the processing rule.
 -         """
 -         if processing_rule.mode == "custom":
 -             # The user-defined segmentation rule
 -             rules = json.loads(processing_rule.rules)
 -             segmentation = rules["segmentation"]
 -             max_segmentation_tokens_length = dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH
 -             if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > max_segmentation_tokens_length:
 -                 raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.")
 - 
 -             separator = segmentation["separator"]
 -             if separator:
 -                 separator = separator.replace('\\n', '\n')
 - 
 -             if segmentation.get('chunk_overlap'):
 -                 chunk_overlap = segmentation['chunk_overlap']
 -             else:
 -                 chunk_overlap = 0
 - 
 -             character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
 -                 chunk_size=segmentation["max_tokens"],
 -                 chunk_overlap=chunk_overlap,
 -                 fixed_separator=separator,
 -                 separators=["\n\n", "。", ". ", " ", ""],
 -                 embedding_model_instance=embedding_model_instance
 -             )
 -         else:
 -             # Automatic segmentation
 -             character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
 -                 chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
 -                 chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
 -                 separators=["\n\n", "。", ". ", " ", ""],
 -                 embedding_model_instance=embedding_model_instance
 -             )
 - 
 -         return character_splitter
 - 
 -     def _step_split(self, text_docs: list[Document], splitter: TextSplitter,
 -                     dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
 -             -> list[Document]:
 -         """
 -         Split the text documents into documents and save them to the document segment.
 -         """
 -         documents = self._split_to_documents(
 -             text_docs=text_docs,
 -             splitter=splitter,
 -             processing_rule=processing_rule,
 -             tenant_id=dataset.tenant_id,
 -             document_form=dataset_document.doc_form,
 -             document_language=dataset_document.doc_language
 -         )
 - 
 -         # save node to document segment
 -         doc_store = DatasetDocumentStore(
 -             dataset=dataset,
 -             user_id=dataset_document.created_by,
 -             document_id=dataset_document.id
 -         )
 - 
 -         # add document segments
 -         doc_store.add_documents(documents)
 - 
 -         # update document status to indexing
 -         cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -         self._update_document_index_status(
 -             document_id=dataset_document.id,
 -             after_indexing_status="indexing",
 -             extra_update_params={
 -                 DatasetDocument.cleaning_completed_at: cur_time,
 -                 DatasetDocument.splitting_completed_at: cur_time,
 -             }
 -         )
 - 
 -         # update segment status to indexing
 -         self._update_segments_by_document(
 -             dataset_document_id=dataset_document.id,
 -             update_params={
 -                 DocumentSegment.status: "indexing",
 -                 DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -             }
 -         )
 - 
 -         return documents
 - 
 -     def _split_to_documents(self, text_docs: list[Document], splitter: TextSplitter,
 -                             processing_rule: DatasetProcessRule, tenant_id: str,
 -                             document_form: str, document_language: str) -> list[Document]:
 -         """
 -         Split the text documents into nodes.
 -         """
 -         all_documents = []
 -         all_qa_documents = []
 -         for text_doc in text_docs:
 -             # document clean
 -             document_text = self._document_clean(text_doc.page_content, processing_rule)
 -             text_doc.page_content = document_text
 - 
 -             # parse document to nodes
 -             documents = splitter.split_documents([text_doc])
 -             split_documents = []
 -             for document_node in documents:
 - 
 -                 if document_node.page_content.strip():
 -                     doc_id = str(uuid.uuid4())
 -                     hash = helper.generate_text_hash(document_node.page_content)
 -                     document_node.metadata['doc_id'] = doc_id
 -                     document_node.metadata['doc_hash'] = hash
 -                     # delete Spliter character
 -                     page_content = document_node.page_content
 -                     if page_content.startswith(".") or page_content.startswith("。"):
 -                         page_content = page_content[1:]
 -                     else:
 -                         page_content = page_content
 -                     document_node.page_content = page_content
 - 
 -                     if document_node.page_content:
 -                         split_documents.append(document_node)
 -             all_documents.extend(split_documents)
 -         # processing qa document
 -         if document_form == 'qa_model':
 -             for i in range(0, len(all_documents), 10):
 -                 threads = []
 -                 sub_documents = all_documents[i:i + 10]
 -                 for doc in sub_documents:
 -                     document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
 -                         'flask_app': current_app._get_current_object(),
 -                         'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
 -                         'document_language': document_language})
 -                     threads.append(document_format_thread)
 -                     document_format_thread.start()
 -                 for thread in threads:
 -                     thread.join()
 -             return all_qa_documents
 -         return all_documents
 - 
 -     def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
 -         format_documents = []
 -         if document_node.page_content is None or not document_node.page_content.strip():
 -             return
 -         with flask_app.app_context():
 -             try:
 -                 # qa model document
 -                 response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
 -                 document_qa_list = self.format_split_text(response)
 -                 qa_documents = []
 -                 for result in document_qa_list:
 -                     qa_document = Document(page_content=result['question'], metadata=document_node.metadata.model_copy())
 -                     doc_id = str(uuid.uuid4())
 -                     hash = helper.generate_text_hash(result['question'])
 -                     qa_document.metadata['answer'] = result['answer']
 -                     qa_document.metadata['doc_id'] = doc_id
 -                     qa_document.metadata['doc_hash'] = hash
 -                     qa_documents.append(qa_document)
 -                 format_documents.extend(qa_documents)
 -             except Exception as e:
 -                 logging.exception(e)
 - 
 -             all_qa_documents.extend(format_documents)
 - 
 -     def _split_to_documents_for_estimate(self, text_docs: list[Document], splitter: TextSplitter,
 -                                          processing_rule: DatasetProcessRule) -> list[Document]:
 -         """
 -         Split the text documents into nodes.
 -         """
 -         all_documents = []
 -         for text_doc in text_docs:
 -             # document clean
 -             document_text = self._document_clean(text_doc.page_content, processing_rule)
 -             text_doc.page_content = document_text
 - 
 -             # parse document to nodes
 -             documents = splitter.split_documents([text_doc])
 - 
 -             split_documents = []
 -             for document in documents:
 -                 if document.page_content is None or not document.page_content.strip():
 -                     continue
 -                 doc_id = str(uuid.uuid4())
 -                 hash = helper.generate_text_hash(document.page_content)
 - 
 -                 document.metadata['doc_id'] = doc_id
 -                 document.metadata['doc_hash'] = hash
 - 
 -                 split_documents.append(document)
 - 
 -             all_documents.extend(split_documents)
 - 
 -         return all_documents
 - 
 -     def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
 -         """
 -         Clean the document text according to the processing rules.
 -         """
 -         if processing_rule.mode == "automatic":
 -             rules = DatasetProcessRule.AUTOMATIC_RULES
 -         else:
 -             rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
 - 
 -         if 'pre_processing_rules' in rules:
 -             pre_processing_rules = rules["pre_processing_rules"]
 -             for pre_processing_rule in pre_processing_rules:
 -                 if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
 -                     # Remove extra spaces
 -                     pattern = r'\n{3,}'
 -                     text = re.sub(pattern, '\n\n', text)
 -                     pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
 -                     text = re.sub(pattern, ' ', text)
 -                 elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
 -                     # Remove email
 -                     pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
 -                     text = re.sub(pattern, '', text)
 - 
 -                     # Remove URL
 -                     pattern = r'https?://[^\s]+'
 -                     text = re.sub(pattern, '', text)
 - 
 -         return text
 - 
 -     def format_split_text(self, text):
 -         regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
 -         matches = re.findall(regex, text, re.UNICODE)
 - 
 -         return [
 -             {
 -                 "question": q,
 -                 "answer": re.sub(r"\n\s*", "\n", a.strip())
 -             }
 -             for q, a in matches if q and a
 -         ]
 - 
 -     def _load(self, index_processor: BaseIndexProcessor, dataset: Dataset,
 -               dataset_document: DatasetDocument, documents: list[Document]) -> None:
 -         """
 -         insert index and update document/segment status to completed
 -         """
 - 
 -         embedding_model_instance = None
 -         if dataset.indexing_technique == 'high_quality':
 -             embedding_model_instance = self.model_manager.get_model_instance(
 -                 tenant_id=dataset.tenant_id,
 -                 provider=dataset.embedding_model_provider,
 -                 model_type=ModelType.TEXT_EMBEDDING,
 -                 model=dataset.embedding_model
 -             )
 - 
 -         # chunk nodes by chunk size
 -         indexing_start_at = time.perf_counter()
 -         tokens = 0
 -         chunk_size = 10
 - 
 -         # create keyword index
 -         create_keyword_thread = threading.Thread(target=self._process_keyword_index,
 -                                                  args=(current_app._get_current_object(),
 -                                                        dataset.id, dataset_document.id, documents))
 -         create_keyword_thread.start()
 -         if dataset.indexing_technique == 'high_quality':
 -             with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
 -                 futures = []
 -                 for i in range(0, len(documents), chunk_size):
 -                     chunk_documents = documents[i:i + chunk_size]
 -                     futures.append(executor.submit(self._process_chunk, current_app._get_current_object(), index_processor,
 -                                                    chunk_documents, dataset,
 -                                                    dataset_document, embedding_model_instance))
 - 
 -                 for future in futures:
 -                     tokens += future.result()
 - 
 -         create_keyword_thread.join()
 -         indexing_end_at = time.perf_counter()
 - 
 -         # update document status to completed
 -         self._update_document_index_status(
 -             document_id=dataset_document.id,
 -             after_indexing_status="completed",
 -             extra_update_params={
 -                 DatasetDocument.tokens: tokens,
 -                 DatasetDocument.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 -                 DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
 -             }
 -         )
 - 
 -     def _process_keyword_index(self, flask_app, dataset_id, document_id, documents):
 -         with flask_app.app_context():
 -             dataset = Dataset.query.filter_by(id=dataset_id).first()
 -             if not dataset:
 -                 raise ValueError("no dataset found")
 -             keyword = Keyword(dataset)
 -             keyword.create(documents)
 -             if dataset.indexing_technique != 'high_quality':
 -                 document_ids = [document.metadata['doc_id'] for document in documents]
 -                 db.session.query(DocumentSegment).filter(
 -                     DocumentSegment.document_id == document_id,
 -                     DocumentSegment.index_node_id.in_(document_ids),
 -                     DocumentSegment.status == "indexing"
 -                 ).update({
 -                     DocumentSegment.status: "completed",
 -                     DocumentSegment.enabled: True,
 -                     DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -                 })
 - 
 -                 db.session.commit()
 - 
 -     def _process_chunk(self, flask_app, index_processor, chunk_documents, dataset, dataset_document,
 -                        embedding_model_instance):
 -         with flask_app.app_context():
 -             # check document is paused
 -             self._check_document_paused_status(dataset_document.id)
 - 
 -             tokens = 0
 -             if embedding_model_instance:
 -                 tokens += sum(
 -                     embedding_model_instance.get_text_embedding_num_tokens(
 -                         [document.page_content]
 -                     )
 -                     for document in chunk_documents
 -                 )
 - 
 -             # load index
 -             index_processor.load(dataset, chunk_documents, with_keywords=False)
 - 
 -             document_ids = [document.metadata['doc_id'] for document in chunk_documents]
 -             db.session.query(DocumentSegment).filter(
 -                 DocumentSegment.document_id == dataset_document.id,
 -                 DocumentSegment.index_node_id.in_(document_ids),
 -                 DocumentSegment.status == "indexing"
 -             ).update({
 -                 DocumentSegment.status: "completed",
 -                 DocumentSegment.enabled: True,
 -                 DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -             })
 - 
 -             db.session.commit()
 - 
 -             return tokens
 - 
 -     def _check_document_paused_status(self, document_id: str):
 -         indexing_cache_key = 'document_{}_is_paused'.format(document_id)
 -         result = redis_client.get(indexing_cache_key)
 -         if result:
 -             raise DocumentIsPausedException()
 - 
 -     def _update_document_index_status(self, document_id: str, after_indexing_status: str,
 -                                       extra_update_params: Optional[dict] = None) -> None:
 -         """
 -         Update the document indexing status.
 -         """
 -         count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
 -         if count > 0:
 -             raise DocumentIsPausedException()
 -         document = DatasetDocument.query.filter_by(id=document_id).first()
 -         if not document:
 -             raise DocumentIsDeletedPausedException()
 - 
 -         update_params = {
 -             DatasetDocument.indexing_status: after_indexing_status
 -         }
 - 
 -         if extra_update_params:
 -             update_params.update(extra_update_params)
 - 
 -         DatasetDocument.query.filter_by(id=document_id).update(update_params)
 -         db.session.commit()
 - 
 -     def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
 -         """
 -         Update the document segment by document id.
 -         """
 -         DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
 -         db.session.commit()
 - 
 -     def batch_add_segments(self, segments: list[DocumentSegment], dataset: Dataset):
 -         """
 -         Batch add segments index processing
 -         """
 -         documents = []
 -         for segment in segments:
 -             document = Document(
 -                 page_content=segment.content,
 -                 metadata={
 -                     "doc_id": segment.index_node_id,
 -                     "doc_hash": segment.index_node_hash,
 -                     "document_id": segment.document_id,
 -                     "dataset_id": segment.dataset_id,
 -                 }
 -             )
 -             documents.append(document)
 -         # save vector index
 -         index_type = dataset.doc_form
 -         index_processor = IndexProcessorFactory(index_type).init_index_processor()
 -         index_processor.load(dataset, documents)
 - 
 -     def _transform(self, index_processor: BaseIndexProcessor, dataset: Dataset,
 -                    text_docs: list[Document], doc_language: str, process_rule: dict) -> list[Document]:
 -         # get embedding model instance
 -         embedding_model_instance = None
 -         if dataset.indexing_technique == 'high_quality':
 -             if dataset.embedding_model_provider:
 -                 embedding_model_instance = self.model_manager.get_model_instance(
 -                     tenant_id=dataset.tenant_id,
 -                     provider=dataset.embedding_model_provider,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                     model=dataset.embedding_model
 -                 )
 -             else:
 -                 embedding_model_instance = self.model_manager.get_default_model_instance(
 -                     tenant_id=dataset.tenant_id,
 -                     model_type=ModelType.TEXT_EMBEDDING,
 -                 )
 - 
 -         documents = index_processor.transform(text_docs, embedding_model_instance=embedding_model_instance,
 -                                               process_rule=process_rule, tenant_id=dataset.tenant_id,
 -                                               doc_language=doc_language)
 - 
 -         return documents
 - 
 -     def _load_segments(self, dataset, dataset_document, documents):
 -         # save node to document segment
 -         doc_store = DatasetDocumentStore(
 -             dataset=dataset,
 -             user_id=dataset_document.created_by,
 -             document_id=dataset_document.id
 -         )
 - 
 -         # add document segments
 -         doc_store.add_documents(documents)
 - 
 -         # update document status to indexing
 -         cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -         self._update_document_index_status(
 -             document_id=dataset_document.id,
 -             after_indexing_status="indexing",
 -             extra_update_params={
 -                 DatasetDocument.cleaning_completed_at: cur_time,
 -                 DatasetDocument.splitting_completed_at: cur_time,
 -             }
 -         )
 - 
 -         # update segment status to indexing
 -         self._update_segments_by_document(
 -             dataset_document_id=dataset_document.id,
 -             update_params={
 -                 DocumentSegment.status: "indexing",
 -                 DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 -             }
 -         )
 -         pass
 - 
 - 
 - class DocumentIsPausedException(Exception):
 -     pass
 - 
 - 
 - class DocumentIsDeletedPausedException(Exception):
 -     pass
 
 
  |