You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

update_annotation_to_index_task.py 2.2KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. import logging
  2. import time
  3. import click
  4. from celery import shared_task # type: ignore
  5. from core.rag.datasource.vdb.vector_factory import Vector
  6. from core.rag.models.document import Document
  7. from extensions.ext_database import db
  8. from models.dataset import Dataset
  9. from services.dataset_service import DatasetCollectionBindingService
  10. @shared_task(queue="dataset")
  11. def update_annotation_to_index_task(
  12. annotation_id: str, question: str, tenant_id: str, app_id: str, collection_binding_id: str
  13. ):
  14. """
  15. Update annotation to index.
  16. :param annotation_id: annotation id
  17. :param question: question
  18. :param tenant_id: tenant id
  19. :param app_id: app id
  20. :param collection_binding_id: embedding binding id
  21. Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct)
  22. """
  23. logging.info(click.style("Start update index for annotation: {}".format(annotation_id), fg="green"))
  24. start_at = time.perf_counter()
  25. try:
  26. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
  27. collection_binding_id, "annotation"
  28. )
  29. dataset = Dataset(
  30. id=app_id,
  31. tenant_id=tenant_id,
  32. indexing_technique="high_quality",
  33. embedding_model_provider=dataset_collection_binding.provider_name,
  34. embedding_model=dataset_collection_binding.model_name,
  35. collection_binding_id=dataset_collection_binding.id,
  36. )
  37. document = Document(
  38. page_content=question, metadata={"annotation_id": annotation_id, "app_id": app_id, "doc_id": annotation_id}
  39. )
  40. vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
  41. vector.delete_by_metadata_field("annotation_id", annotation_id)
  42. vector.add_texts([document])
  43. end_at = time.perf_counter()
  44. logging.info(
  45. click.style(
  46. "Build index successful for annotation: {} latency: {}".format(annotation_id, end_at - start_at),
  47. fg="green",
  48. )
  49. )
  50. except Exception:
  51. logging.exception("Build index for annotation failed")
  52. finally:
  53. db.session.close()