Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

batch_import_annotations_task.py 3.8KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. import logging
  2. import time
  3. import click
  4. from celery import shared_task
  5. from werkzeug.exceptions import NotFound
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.models.document import Document
  8. from extensions.ext_database import db
  9. from extensions.ext_redis import redis_client
  10. from models.dataset import Dataset
  11. from models.model import App, AppAnnotationSetting, MessageAnnotation
  12. from services.dataset_service import DatasetCollectionBindingService
  13. logger = logging.getLogger(__name__)
  14. @shared_task(queue="dataset")
  15. def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str, user_id: str):
  16. """
  17. Add annotation to index.
  18. :param job_id: job_id
  19. :param content_list: content list
  20. :param app_id: app id
  21. :param tenant_id: tenant id
  22. :param user_id: user_id
  23. """
  24. logger.info(click.style(f"Start batch import annotation: {job_id}", fg="green"))
  25. start_at = time.perf_counter()
  26. indexing_cache_key = f"app_annotation_batch_import_{str(job_id)}"
  27. # get app info
  28. app = db.session.query(App).where(App.id == app_id, App.tenant_id == tenant_id, App.status == "normal").first()
  29. if app:
  30. try:
  31. documents = []
  32. for content in content_list:
  33. annotation = MessageAnnotation(
  34. app_id=app.id, content=content["answer"], question=content["question"], account_id=user_id
  35. )
  36. db.session.add(annotation)
  37. db.session.flush()
  38. document = Document(
  39. page_content=content["question"],
  40. metadata={"annotation_id": annotation.id, "app_id": app_id, "doc_id": annotation.id},
  41. )
  42. documents.append(document)
  43. # if annotation reply is enabled , batch add annotations' index
  44. app_annotation_setting = (
  45. db.session.query(AppAnnotationSetting).where(AppAnnotationSetting.app_id == app_id).first()
  46. )
  47. if app_annotation_setting:
  48. dataset_collection_binding = (
  49. DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
  50. app_annotation_setting.collection_binding_id, "annotation"
  51. )
  52. )
  53. if not dataset_collection_binding:
  54. raise NotFound("App annotation setting not found")
  55. dataset = Dataset(
  56. id=app_id,
  57. tenant_id=tenant_id,
  58. indexing_technique="high_quality",
  59. embedding_model_provider=dataset_collection_binding.provider_name,
  60. embedding_model=dataset_collection_binding.model_name,
  61. collection_binding_id=dataset_collection_binding.id,
  62. )
  63. vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
  64. vector.create(documents, duplicate_check=True)
  65. db.session.commit()
  66. redis_client.setex(indexing_cache_key, 600, "completed")
  67. end_at = time.perf_counter()
  68. logger.info(
  69. click.style(
  70. "Build index successful for batch import annotation: {} latency: {}".format(
  71. job_id, end_at - start_at
  72. ),
  73. fg="green",
  74. )
  75. )
  76. except Exception as e:
  77. db.session.rollback()
  78. redis_client.setex(indexing_cache_key, 600, "error")
  79. indexing_error_msg_key = f"app_annotation_batch_import_error_msg_{str(job_id)}"
  80. redis_client.setex(indexing_error_msg_key, 600, str(e))
  81. logger.exception("Build index for batch import annotations failed")
  82. finally:
  83. db.session.close()