You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Bowen Liang f67b164b0d
refactor: extract db configs and celery configs into dify config (#5491)
1 rok temu
..
.vscode build: initial support for poetry build tool (#4513) 1 rok temu
configs refactor: extract db configs and celery configs into dify config (#5491) 1 rok temu
constants feat: Added hindi translation i18n (#5240) 1 rok temu
controllers Add Oracle23ai as a vector datasource (#5342) 1 rok temu
core Add Oracle23ai as a vector datasource (#5342) 1 rok temu
docker feat: add `flask upgrade-db` command for running db upgrade with redis lock (#5333) 1 rok temu
events feat: support opensearch approximate k-NN (#5322) 1 rok temu
extensions feat: introduce pydantic-settings for config definition and validation (#5202) 1 rok temu
fields feat: option to hide workflow steps (#5436) 1 rok temu
libs feat(api/auth): switch-to-stateful-authentication (#5438) 1 rok temu
migrations refactor: extract db configs and celery configs into dify config (#5491) 1 rok temu
models feat: option to hide workflow steps (#5436) 1 rok temu
schedule Feat/dify rag (#2528) 1 rok temu
services feat(api/auth): switch-to-stateful-authentication (#5438) 1 rok temu
tasks Feat/firecrawl data source (#5232) 1 rok temu
templates fix: email template style (#1914) 1 rok temu
tests refactor: extract db configs and celery configs into dify config (#5491) 1 rok temu
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 rok temu
.env.example feat: support tencent cos storage (#5297) 1 rok temu
Dockerfile build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 rok temu
README.md chore: remove pip support for api service (#5453) 1 rok temu
app.py chore: use singular style in config class name (#5489) 1 rok temu
commands.py feat: support opensearch approximate k-NN (#5322) 1 rok temu
config.py refactor: extract db configs and celery configs into dify config (#5491) 1 rok temu
poetry.lock Add Oracle23ai as a vector datasource (#5342) 1 rok temu
poetry.toml build: initial support for poetry build tool (#4513) 1 rok temu
pyproject.toml Add Oracle23ai as a vector datasource (#5342) 1 rok temu
requirements.txt chore: remove pip support for api service (#5453) 1 rok temu

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   docker-compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh