Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
Bowen Liang f67b164b0d
refactor: extract db configs and celery configs into dify config (#5491)
pirms 1 gada
..
.vscode build: initial support for poetry build tool (#4513) pirms 1 gada
configs refactor: extract db configs and celery configs into dify config (#5491) pirms 1 gada
constants feat: Added hindi translation i18n (#5240) pirms 1 gada
controllers Add Oracle23ai as a vector datasource (#5342) pirms 1 gada
core Add Oracle23ai as a vector datasource (#5342) pirms 1 gada
docker feat: add `flask upgrade-db` command for running db upgrade with redis lock (#5333) pirms 1 gada
events feat: support opensearch approximate k-NN (#5322) pirms 1 gada
extensions feat: introduce pydantic-settings for config definition and validation (#5202) pirms 1 gada
fields feat: option to hide workflow steps (#5436) pirms 1 gada
libs feat(api/auth): switch-to-stateful-authentication (#5438) pirms 1 gada
migrations refactor: extract db configs and celery configs into dify config (#5491) pirms 1 gada
models feat: option to hide workflow steps (#5436) pirms 1 gada
schedule Feat/dify rag (#2528) pirms 1 gada
services feat(api/auth): switch-to-stateful-authentication (#5438) pirms 1 gada
tasks Feat/firecrawl data source (#5232) pirms 1 gada
templates fix: email template style (#1914) pirms 1 gada
tests refactor: extract db configs and celery configs into dify config (#5491) pirms 1 gada
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) pirms 1 gada
.env.example feat: support tencent cos storage (#5297) pirms 1 gada
Dockerfile build: support Poetry for depencencies tool in api's Dockerfile (#5105) pirms 1 gada
README.md chore: remove pip support for api service (#5453) pirms 1 gada
app.py chore: use singular style in config class name (#5489) pirms 1 gada
commands.py feat: support opensearch approximate k-NN (#5322) pirms 1 gada
config.py refactor: extract db configs and celery configs into dify config (#5491) pirms 1 gada
poetry.lock Add Oracle23ai as a vector datasource (#5342) pirms 1 gada
poetry.toml build: initial support for poetry build tool (#4513) pirms 1 gada
pyproject.toml Add Oracle23ai as a vector datasource (#5342) pirms 1 gada
requirements.txt chore: remove pip support for api service (#5453) pirms 1 gada

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   docker-compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh