You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Matri f62f71a81a
build: initial support for poetry build tool (#4513)
1 年之前
..
.vscode build: initial support for poetry build tool (#4513) 1 年之前
constants Feat/chat custom disclaimer (#4306) 1 年之前
controllers feat: add dataset delete endpoint (#5048) 1 年之前
core chore: update maas model provider description (#5056) 1 年之前
docker improvement: introduce Super-Linter actions to check style for shell script, dockerfile and yaml files (#1966) 1 年之前
events Feat/workflow phase2 (#4687) 1 年之前
extensions Fix/azure blob new version (#5004) 1 年之前
fields support rename document (#4915) 1 年之前
libs feat: opportunistic tls flag for smtp (#4794) 1 年之前
migrations feat: backend model load balancing support (#4927) 1 年之前
models feat: backend model load balancing support (#4927) 1 年之前
schedule Feat/dify rag (#2528) 1 年之前
services fix: issue where an error occurs when invoking TTS without selecting a voice (#5046) 1 年之前
tasks feat: backend model load balancing support (#4927) 1 年之前
templates fix: email template style (#1914) 1 年之前
tests chore: rename vdb tests for PGVector and PGvectoRS (#4973) 1 年之前
.dockerignore build: fix .dockerignore file (#800) 2 年之前
.env.example feat: support tidb vector (#4588) 1 年之前
Dockerfile improvement: speed up dependency installation in docker image rebuilds by mounting cache layer (#3218) 1 年之前
README.md build: initial support for poetry build tool (#4513) 1 年之前
app.py refactor: config file (#3852) 1 年之前
commands.py improve: generalize vector factory classes and vector type (#5033) 1 年之前
config.py feat: support tidb vector (#4588) 1 年之前
poetry.lock build: initial support for poetry build tool (#4513) 1 年之前
poetry.toml build: initial support for poetry build tool (#4513) 1 年之前
pyproject.toml build: initial support for poetry build tool (#4513) 1 年之前
requirements-dev.txt chore: skip explicit installing jinja2 as testing dependency (#4845) 1 年之前
requirements.txt feat: support tidb vector (#4588) 1 年之前

README.md

Dify Backend API

Usage

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   docker-compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
  1. Create environment.
    • Anaconda
      If you use Anaconda, create a new environment and activate it bash conda create --name dify python=3.10 conda activate dify
    • Poetry
      If you use Poetry, you don’t need to manually create the environment. You can execute poetry shell to activate the environment.
  2. Install dependencies
    • Anaconda
      bash pip install -r requirements.txt
    • Poetry
      bash poetry install In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead. base poetry shell # activate current environment poetry add $(cat requirements.txt) # install dependencies of production and update pyproject.toml poetry add $(cat requirements-dev.txt) --group dev # install dependencies of development and update pyproject.toml
  3. Run migrate

Before the first launch, migrate the database to the latest version.

   flask db upgrade

⚠️ If you encounter problems with jieba, for example

   > flask db upgrade
   Error: While importing 'app', an ImportError was raised:

Please run the following command instead.

   pip install -r requirements.txt --upgrade --force-reinstall
  1. Start backend: bash flask run --host 0.0.0.0 --port=5001 --debug
  2. Setup your application by visiting http://localhost:5001/console/api/setup or other apis…
  3. If you need to debug local async processing, please start the worker service by running celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail. The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    pip install -r requirements.txt -r requirements-dev.txt
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    dev/pytest/pytest_all_tests.sh