Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.
Vimpas 0006c6f0fd
fix(storage): 🐛 Create S3 bucket if it doesn't exist (#7514)
1 рік тому
..
.idea chore: remove .idea and .vscode from root path (#7437) 1 рік тому
.vscode chore: remove .idea and .vscode from root path (#7437) 1 рік тому
configs chore: support CODE_MAX_PRECISION (#7484) 1 рік тому
constants chore(api): Introduce Ruff Formatter. (#7291) 1 рік тому
contexts chore(api): Introduce Ruff Formatter. (#7291) 1 рік тому
controllers Feat/7134 use dataset api create a dataset with permission (#7508) 1 рік тому
core add finish_reason to the LLM node output (#7498) 1 рік тому
docker fix: ensure db migration in docker entry script running with `upgrade-db` command for proper locking (#6946) 1 рік тому
events feat: custom app icon (#7196) 1 рік тому
extensions fix(storage): 🐛 Create S3 bucket if it doesn't exist (#7514) 1 рік тому
fields feat: Sort conversations by updated_at desc (#7348) 1 рік тому
libs feat: custom app icon (#7196) 1 рік тому
migrations chore(database): Rename table name from `workflow__conversation_variables` to `workflow_conversation_variables`. (#7432) 1 рік тому
models Feat/7134 use dataset api create a dataset with permission (#7508) 1 рік тому
schedule chore(api): Introduce Ruff Formatter. (#7291) 1 рік тому
services Feat/7134 use dataset api create a dataset with permission (#7508) 1 рік тому
tasks chore: update docstrings (#7343) 1 рік тому
templates feat: implement forgot password feature (#5534) 1 рік тому
tests Chore/remove python dependencies selector (#7494) 1 рік тому
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 рік тому
.env.example Feat/7134 use dataset api create a dataset with permission (#7508) 1 рік тому
Dockerfile add nltk punkt resource (#7063) 1 рік тому
README.md Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 1 рік тому
app.py chore(api): Introduce Ruff Formatter. (#7291) 1 рік тому
commands.py chore(api): Introduce Ruff Formatter. (#7291) 1 рік тому
poetry.lock fix the issue of the refine_switches at param being invalid in the Novita.AI tool (#7485) 1 рік тому
poetry.toml build: initial support for poetry build tool (#4513) 1 рік тому
pyproject.toml fix the issue of the refine_switches at param being invalid in the Novita.AI tool (#7485) 1 рік тому

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh