Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

retry_document_indexing_task.py 5.3KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. import logging
  2. import time
  3. import click
  4. from celery import shared_task
  5. from sqlalchemy import select
  6. from core.indexing_runner import IndexingRunner
  7. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  8. from extensions.ext_database import db
  9. from extensions.ext_redis import redis_client
  10. from libs.datetime_utils import naive_utc_now
  11. from models.account import Account, Tenant
  12. from models.dataset import Dataset, Document, DocumentSegment
  13. from services.feature_service import FeatureService
  14. from services.rag_pipeline.rag_pipeline import RagPipelineService
  15. logger = logging.getLogger(__name__)
  16. @shared_task(queue="dataset")
  17. def retry_document_indexing_task(dataset_id: str, document_ids: list[str], user_id: str):
  18. """
  19. Async process document
  20. :param dataset_id:
  21. :param document_ids:
  22. :param user_id:
  23. Usage: retry_document_indexing_task.delay(dataset_id, document_ids, user_id)
  24. """
  25. start_at = time.perf_counter()
  26. try:
  27. dataset = db.session.query(Dataset).where(Dataset.id == dataset_id).first()
  28. if not dataset:
  29. logger.info(click.style(f"Dataset not found: {dataset_id}", fg="red"))
  30. return
  31. user = db.session.query(Account).where(Account.id == user_id).first()
  32. if not user:
  33. logger.info(click.style(f"User not found: {user_id}", fg="red"))
  34. return
  35. tenant = db.session.query(Tenant).where(Tenant.id == dataset.tenant_id).first()
  36. if not tenant:
  37. raise ValueError("Tenant not found")
  38. user.current_tenant = tenant
  39. for document_id in document_ids:
  40. retry_indexing_cache_key = f"document_{document_id}_is_retried"
  41. # check document limit
  42. features = FeatureService.get_features(tenant.id)
  43. try:
  44. if features.billing.enabled:
  45. vector_space = features.vector_space
  46. if 0 < vector_space.limit <= vector_space.size:
  47. raise ValueError(
  48. "Your total number of documents plus the number of uploads have over the limit of "
  49. "your subscription."
  50. )
  51. except Exception as e:
  52. document = (
  53. db.session.query(Document)
  54. .where(Document.id == document_id, Document.dataset_id == dataset_id)
  55. .first()
  56. )
  57. if document:
  58. document.indexing_status = "error"
  59. document.error = str(e)
  60. document.stopped_at = naive_utc_now()
  61. db.session.add(document)
  62. db.session.commit()
  63. redis_client.delete(retry_indexing_cache_key)
  64. return
  65. logger.info(click.style(f"Start retry document: {document_id}", fg="green"))
  66. document = (
  67. db.session.query(Document).where(Document.id == document_id, Document.dataset_id == dataset_id).first()
  68. )
  69. if not document:
  70. logger.info(click.style(f"Document not found: {document_id}", fg="yellow"))
  71. return
  72. try:
  73. # clean old data
  74. index_processor = IndexProcessorFactory(document.doc_form).init_index_processor()
  75. segments = db.session.scalars(
  76. select(DocumentSegment).where(DocumentSegment.document_id == document_id)
  77. ).all()
  78. if segments:
  79. index_node_ids = [segment.index_node_id for segment in segments]
  80. # delete from vector index
  81. index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
  82. for segment in segments:
  83. db.session.delete(segment)
  84. db.session.commit()
  85. document.indexing_status = "parsing"
  86. document.processing_started_at = naive_utc_now()
  87. db.session.add(document)
  88. db.session.commit()
  89. if dataset.runtime_mode == "rag_pipeline":
  90. rag_pipeline_service = RagPipelineService()
  91. rag_pipeline_service.retry_error_document(dataset, document, user)
  92. else:
  93. indexing_runner = IndexingRunner()
  94. indexing_runner.run([document])
  95. redis_client.delete(retry_indexing_cache_key)
  96. except Exception as ex:
  97. document.indexing_status = "error"
  98. document.error = str(ex)
  99. document.stopped_at = naive_utc_now()
  100. db.session.add(document)
  101. db.session.commit()
  102. logger.info(click.style(str(ex), fg="yellow"))
  103. redis_client.delete(retry_indexing_cache_key)
  104. logger.exception("retry_document_indexing_task failed, document_id: %s", document_id)
  105. end_at = time.perf_counter()
  106. logger.info(click.style(f"Retry dataset: {dataset_id} latency: {end_at - start_at}", fg="green"))
  107. except Exception as e:
  108. logger.exception(
  109. "retry_document_indexing_task failed, dataset_id: %s, document_ids: %s", dataset_id, document_ids
  110. )
  111. raise e
  112. finally:
  113. db.session.close()