| 123456789101112131415161718192021222324252627282930313233343536373839404142 | 
							- from flask import current_app
 - from langchain.embeddings import OpenAIEmbeddings
 - 
 - from core.embedding.cached_embedding import CacheEmbedding
 - from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
 - from core.index.vector_index.vector_index import VectorIndex
 - from core.llm.llm_builder import LLMBuilder
 - from models.dataset import Dataset
 - 
 - 
 - class IndexBuilder:
 -     @classmethod
 -     def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):
 -         if indexing_technique == "high_quality":
 -             if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
 -                 return None
 - 
 -             model_credentials = LLMBuilder.get_model_credentials(
 -                 tenant_id=dataset.tenant_id,
 -                 model_provider=LLMBuilder.get_default_provider(dataset.tenant_id, 'text-embedding-ada-002'),
 -                 model_name='text-embedding-ada-002'
 -             )
 - 
 -             embeddings = CacheEmbedding(OpenAIEmbeddings(
 -                 max_retries=1,
 -                 **model_credentials
 -             ))
 - 
 -             return VectorIndex(
 -                 dataset=dataset,
 -                 config=current_app.config,
 -                 embeddings=embeddings
 -             )
 -         elif indexing_technique == "economy":
 -             return KeywordTableIndex(
 -                 dataset=dataset,
 -                 config=KeywordTableConfig(
 -                     max_keywords_per_chunk=10
 -                 )
 -             )
 -         else:
 -             raise ValueError('Unknown indexing technique')
 
 
  |