You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

dataset_retrieval.py 53KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220
  1. import json
  2. import math
  3. import re
  4. import threading
  5. from collections import Counter, defaultdict
  6. from collections.abc import Generator, Mapping
  7. from typing import Any, Optional, Union, cast
  8. from flask import Flask, current_app
  9. from sqlalchemy import Float, and_, or_, text
  10. from sqlalchemy import cast as sqlalchemy_cast
  11. from sqlalchemy.orm import Session
  12. from core.app.app_config.entities import (
  13. DatasetEntity,
  14. DatasetRetrieveConfigEntity,
  15. MetadataFilteringCondition,
  16. ModelConfig,
  17. )
  18. from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
  19. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  20. from core.entities.agent_entities import PlanningStrategy
  21. from core.entities.model_entities import ModelStatus
  22. from core.memory.token_buffer_memory import TokenBufferMemory
  23. from core.model_manager import ModelInstance, ModelManager
  24. from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
  25. from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageRole, PromptMessageTool
  26. from core.model_runtime.entities.model_entities import ModelFeature, ModelType
  27. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  28. from core.ops.entities.trace_entity import TraceTaskName
  29. from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
  30. from core.ops.utils import measure_time
  31. from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
  32. from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate
  33. from core.prompt.simple_prompt_transform import ModelMode
  34. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  35. from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
  36. from core.rag.datasource.retrieval_service import RetrievalService
  37. from core.rag.entities.citation_metadata import RetrievalSourceMetadata
  38. from core.rag.entities.context_entities import DocumentContext
  39. from core.rag.entities.metadata_entities import Condition, MetadataCondition
  40. from core.rag.index_processor.constant.index_type import IndexType
  41. from core.rag.models.document import Document
  42. from core.rag.rerank.rerank_type import RerankMode
  43. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  44. from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
  45. from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
  46. from core.rag.retrieval.template_prompts import (
  47. METADATA_FILTER_ASSISTANT_PROMPT_1,
  48. METADATA_FILTER_ASSISTANT_PROMPT_2,
  49. METADATA_FILTER_COMPLETION_PROMPT,
  50. METADATA_FILTER_SYSTEM_PROMPT,
  51. METADATA_FILTER_USER_PROMPT_1,
  52. METADATA_FILTER_USER_PROMPT_2,
  53. METADATA_FILTER_USER_PROMPT_3,
  54. )
  55. from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
  56. from extensions.ext_database import db
  57. from libs.json_in_md_parser import parse_and_check_json_markdown
  58. from models.dataset import ChildChunk, Dataset, DatasetMetadata, DatasetQuery, DocumentSegment
  59. from models.dataset import Document as DatasetDocument
  60. from services.external_knowledge_service import ExternalDatasetService
  61. default_retrieval_model: dict[str, Any] = {
  62. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  63. "reranking_enable": False,
  64. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  65. "top_k": 2,
  66. "score_threshold_enabled": False,
  67. }
  68. class DatasetRetrieval:
  69. def __init__(self, application_generate_entity=None):
  70. self.application_generate_entity = application_generate_entity
  71. def retrieve(
  72. self,
  73. app_id: str,
  74. user_id: str,
  75. tenant_id: str,
  76. model_config: ModelConfigWithCredentialsEntity,
  77. config: DatasetEntity,
  78. query: str,
  79. invoke_from: InvokeFrom,
  80. show_retrieve_source: bool,
  81. hit_callback: DatasetIndexToolCallbackHandler,
  82. message_id: str,
  83. memory: Optional[TokenBufferMemory] = None,
  84. inputs: Optional[Mapping[str, Any]] = None,
  85. ) -> Optional[str]:
  86. """
  87. Retrieve dataset.
  88. :param app_id: app_id
  89. :param user_id: user_id
  90. :param tenant_id: tenant id
  91. :param model_config: model config
  92. :param config: dataset config
  93. :param query: query
  94. :param invoke_from: invoke from
  95. :param show_retrieve_source: show retrieve source
  96. :param hit_callback: hit callback
  97. :param message_id: message id
  98. :param memory: memory
  99. :param inputs: inputs
  100. :return:
  101. """
  102. dataset_ids = config.dataset_ids
  103. if len(dataset_ids) == 0:
  104. return None
  105. retrieve_config = config.retrieve_config
  106. # check model is support tool calling
  107. model_type_instance = model_config.provider_model_bundle.model_type_instance
  108. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  109. model_manager = ModelManager()
  110. model_instance = model_manager.get_model_instance(
  111. tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
  112. )
  113. # get model schema
  114. model_schema = model_type_instance.get_model_schema(
  115. model=model_config.model, credentials=model_config.credentials
  116. )
  117. if not model_schema:
  118. return None
  119. planning_strategy = PlanningStrategy.REACT_ROUTER
  120. features = model_schema.features
  121. if features:
  122. if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
  123. planning_strategy = PlanningStrategy.ROUTER
  124. available_datasets = []
  125. for dataset_id in dataset_ids:
  126. # get dataset from dataset id
  127. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  128. # pass if dataset is not available
  129. if not dataset:
  130. continue
  131. # pass if dataset is not available
  132. if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
  133. continue
  134. available_datasets.append(dataset)
  135. if inputs:
  136. inputs = {key: str(value) for key, value in inputs.items()}
  137. else:
  138. inputs = {}
  139. available_datasets_ids = [dataset.id for dataset in available_datasets]
  140. metadata_filter_document_ids, metadata_condition = self.get_metadata_filter_condition(
  141. available_datasets_ids,
  142. query,
  143. tenant_id,
  144. user_id,
  145. retrieve_config.metadata_filtering_mode, # type: ignore
  146. retrieve_config.metadata_model_config, # type: ignore
  147. retrieve_config.metadata_filtering_conditions,
  148. inputs,
  149. )
  150. all_documents = []
  151. user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
  152. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  153. all_documents = self.single_retrieve(
  154. app_id,
  155. tenant_id,
  156. user_id,
  157. user_from,
  158. available_datasets,
  159. query,
  160. model_instance,
  161. model_config,
  162. planning_strategy,
  163. message_id,
  164. metadata_filter_document_ids,
  165. metadata_condition,
  166. )
  167. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  168. all_documents = self.multiple_retrieve(
  169. app_id,
  170. tenant_id,
  171. user_id,
  172. user_from,
  173. available_datasets,
  174. query,
  175. retrieve_config.top_k or 0,
  176. retrieve_config.score_threshold or 0,
  177. retrieve_config.rerank_mode or "reranking_model",
  178. retrieve_config.reranking_model,
  179. retrieve_config.weights,
  180. True if retrieve_config.reranking_enabled is None else retrieve_config.reranking_enabled,
  181. message_id,
  182. metadata_filter_document_ids,
  183. metadata_condition,
  184. )
  185. dify_documents = [item for item in all_documents if item.provider == "dify"]
  186. external_documents = [item for item in all_documents if item.provider == "external"]
  187. document_context_list: list[DocumentContext] = []
  188. retrieval_resource_list: list[RetrievalSourceMetadata] = []
  189. # deal with external documents
  190. for item in external_documents:
  191. document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
  192. source = RetrievalSourceMetadata(
  193. dataset_id=item.metadata.get("dataset_id"),
  194. dataset_name=item.metadata.get("dataset_name"),
  195. document_id=item.metadata.get("document_id") or item.metadata.get("title"),
  196. document_name=item.metadata.get("title"),
  197. data_source_type="external",
  198. retriever_from=invoke_from.to_source(),
  199. score=item.metadata.get("score"),
  200. content=item.page_content,
  201. )
  202. retrieval_resource_list.append(source)
  203. # deal with dify documents
  204. if dify_documents:
  205. records = RetrievalService.format_retrieval_documents(dify_documents)
  206. if records:
  207. for record in records:
  208. segment = record.segment
  209. if segment.answer:
  210. document_context_list.append(
  211. DocumentContext(
  212. content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
  213. score=record.score,
  214. )
  215. )
  216. else:
  217. document_context_list.append(
  218. DocumentContext(
  219. content=segment.get_sign_content(),
  220. score=record.score,
  221. )
  222. )
  223. if show_retrieve_source:
  224. for record in records:
  225. segment = record.segment
  226. dataset = db.session.query(Dataset).filter_by(id=segment.dataset_id).first()
  227. document = (
  228. db.session.query(DatasetDocument)
  229. .where(
  230. DatasetDocument.id == segment.document_id,
  231. DatasetDocument.enabled == True,
  232. DatasetDocument.archived == False,
  233. )
  234. .first()
  235. )
  236. if dataset and document:
  237. source = RetrievalSourceMetadata(
  238. dataset_id=dataset.id,
  239. dataset_name=dataset.name,
  240. document_id=document.id,
  241. document_name=document.name,
  242. data_source_type=document.data_source_type,
  243. segment_id=segment.id,
  244. retriever_from=invoke_from.to_source(),
  245. score=record.score or 0.0,
  246. doc_metadata=document.doc_metadata,
  247. )
  248. if invoke_from.to_source() == "dev":
  249. source.hit_count = segment.hit_count
  250. source.word_count = segment.word_count
  251. source.segment_position = segment.position
  252. source.index_node_hash = segment.index_node_hash
  253. if segment.answer:
  254. source.content = f"question:{segment.content} \nanswer:{segment.answer}"
  255. else:
  256. source.content = segment.content
  257. retrieval_resource_list.append(source)
  258. if hit_callback and retrieval_resource_list:
  259. retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.score or 0.0, reverse=True)
  260. for position, item in enumerate(retrieval_resource_list, start=1):
  261. item.position = position
  262. hit_callback.return_retriever_resource_info(retrieval_resource_list)
  263. if document_context_list:
  264. document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
  265. return str("\n".join([document_context.content for document_context in document_context_list]))
  266. return ""
  267. def single_retrieve(
  268. self,
  269. app_id: str,
  270. tenant_id: str,
  271. user_id: str,
  272. user_from: str,
  273. available_datasets: list,
  274. query: str,
  275. model_instance: ModelInstance,
  276. model_config: ModelConfigWithCredentialsEntity,
  277. planning_strategy: PlanningStrategy,
  278. message_id: Optional[str] = None,
  279. metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,
  280. metadata_condition: Optional[MetadataCondition] = None,
  281. ):
  282. tools = []
  283. for dataset in available_datasets:
  284. description = dataset.description
  285. if not description:
  286. description = "useful for when you want to answer queries about the " + dataset.name
  287. description = description.replace("\n", "").replace("\r", "")
  288. message_tool = PromptMessageTool(
  289. name=dataset.id,
  290. description=description,
  291. parameters={
  292. "type": "object",
  293. "properties": {},
  294. "required": [],
  295. },
  296. )
  297. tools.append(message_tool)
  298. dataset_id = None
  299. if planning_strategy == PlanningStrategy.REACT_ROUTER:
  300. react_multi_dataset_router = ReactMultiDatasetRouter()
  301. dataset_id = react_multi_dataset_router.invoke(
  302. query, tools, model_config, model_instance, user_id, tenant_id
  303. )
  304. elif planning_strategy == PlanningStrategy.ROUTER:
  305. function_call_router = FunctionCallMultiDatasetRouter()
  306. dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
  307. if dataset_id:
  308. # get retrieval model config
  309. dataset = db.session.query(Dataset).where(Dataset.id == dataset_id).first()
  310. if dataset:
  311. results = []
  312. if dataset.provider == "external":
  313. external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  314. tenant_id=dataset.tenant_id,
  315. dataset_id=dataset_id,
  316. query=query,
  317. external_retrieval_parameters=dataset.retrieval_model,
  318. metadata_condition=metadata_condition,
  319. )
  320. for external_document in external_documents:
  321. document = Document(
  322. page_content=external_document.get("content"),
  323. metadata=external_document.get("metadata"),
  324. provider="external",
  325. )
  326. if document.metadata is not None:
  327. document.metadata["score"] = external_document.get("score")
  328. document.metadata["title"] = external_document.get("title")
  329. document.metadata["dataset_id"] = dataset_id
  330. document.metadata["dataset_name"] = dataset.name
  331. results.append(document)
  332. else:
  333. if metadata_condition and not metadata_filter_document_ids:
  334. return []
  335. document_ids_filter = None
  336. if metadata_filter_document_ids:
  337. document_ids = metadata_filter_document_ids.get(dataset.id, [])
  338. if document_ids:
  339. document_ids_filter = document_ids
  340. else:
  341. return []
  342. retrieval_model_config = dataset.retrieval_model or default_retrieval_model
  343. # get top k
  344. top_k = retrieval_model_config["top_k"]
  345. # get retrieval method
  346. if dataset.indexing_technique == "economy":
  347. retrieval_method = "keyword_search"
  348. else:
  349. retrieval_method = retrieval_model_config["search_method"]
  350. # get reranking model
  351. reranking_model = (
  352. retrieval_model_config["reranking_model"]
  353. if retrieval_model_config["reranking_enable"]
  354. else None
  355. )
  356. # get score threshold
  357. score_threshold = 0.0
  358. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  359. if score_threshold_enabled:
  360. score_threshold = retrieval_model_config.get("score_threshold", 0.0)
  361. with measure_time() as timer:
  362. results = RetrievalService.retrieve(
  363. retrieval_method=retrieval_method,
  364. dataset_id=dataset.id,
  365. query=query,
  366. top_k=top_k,
  367. score_threshold=score_threshold,
  368. reranking_model=reranking_model,
  369. reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
  370. weights=retrieval_model_config.get("weights", None),
  371. document_ids_filter=document_ids_filter,
  372. )
  373. self._on_query(query, [dataset_id], app_id, user_from, user_id)
  374. if results:
  375. self._on_retrieval_end(results, message_id, timer)
  376. return results
  377. return []
  378. def multiple_retrieve(
  379. self,
  380. app_id: str,
  381. tenant_id: str,
  382. user_id: str,
  383. user_from: str,
  384. available_datasets: list,
  385. query: str,
  386. top_k: int,
  387. score_threshold: float,
  388. reranking_mode: str,
  389. reranking_model: Optional[dict] = None,
  390. weights: Optional[dict[str, Any]] = None,
  391. reranking_enable: bool = True,
  392. message_id: Optional[str] = None,
  393. metadata_filter_document_ids: Optional[dict[str, list[str]]] = None,
  394. metadata_condition: Optional[MetadataCondition] = None,
  395. ):
  396. if not available_datasets:
  397. return []
  398. threads = []
  399. all_documents: list[Document] = []
  400. dataset_ids = [dataset.id for dataset in available_datasets]
  401. index_type_check = all(
  402. item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
  403. )
  404. if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
  405. raise ValueError(
  406. "The configured knowledge base list have different indexing technique, please set reranking model."
  407. )
  408. index_type = available_datasets[0].indexing_technique
  409. if index_type == "high_quality":
  410. embedding_model_check = all(
  411. item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
  412. )
  413. embedding_model_provider_check = all(
  414. item.embedding_model_provider == available_datasets[0].embedding_model_provider
  415. for item in available_datasets
  416. )
  417. if (
  418. reranking_enable
  419. and reranking_mode == "weighted_score"
  420. and (not embedding_model_check or not embedding_model_provider_check)
  421. ):
  422. raise ValueError(
  423. "The configured knowledge base list have different embedding model, please set reranking model."
  424. )
  425. if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
  426. if weights is not None:
  427. weights["vector_setting"]["embedding_provider_name"] = available_datasets[
  428. 0
  429. ].embedding_model_provider
  430. weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
  431. for dataset in available_datasets:
  432. index_type = dataset.indexing_technique
  433. document_ids_filter = None
  434. if dataset.provider != "external":
  435. if metadata_condition and not metadata_filter_document_ids:
  436. continue
  437. if metadata_filter_document_ids:
  438. document_ids = metadata_filter_document_ids.get(dataset.id, [])
  439. if document_ids:
  440. document_ids_filter = document_ids
  441. else:
  442. continue
  443. retrieval_thread = threading.Thread(
  444. target=self._retriever,
  445. kwargs={
  446. "flask_app": current_app._get_current_object(), # type: ignore
  447. "dataset_id": dataset.id,
  448. "query": query,
  449. "top_k": top_k,
  450. "all_documents": all_documents,
  451. "document_ids_filter": document_ids_filter,
  452. "metadata_condition": metadata_condition,
  453. },
  454. )
  455. threads.append(retrieval_thread)
  456. retrieval_thread.start()
  457. for thread in threads:
  458. thread.join()
  459. with measure_time() as timer:
  460. if reranking_enable:
  461. # do rerank for searched documents
  462. data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
  463. all_documents = data_post_processor.invoke(
  464. query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
  465. )
  466. else:
  467. if index_type == "economy":
  468. all_documents = self.calculate_keyword_score(query, all_documents, top_k)
  469. elif index_type == "high_quality":
  470. all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
  471. else:
  472. all_documents = all_documents[:top_k] if top_k else all_documents
  473. self._on_query(query, dataset_ids, app_id, user_from, user_id)
  474. if all_documents:
  475. self._on_retrieval_end(all_documents, message_id, timer)
  476. return all_documents
  477. def _on_retrieval_end(
  478. self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
  479. ) -> None:
  480. """Handle retrieval end."""
  481. dify_documents = [document for document in documents if document.provider == "dify"]
  482. for document in dify_documents:
  483. if document.metadata is not None:
  484. dataset_document = (
  485. db.session.query(DatasetDocument)
  486. .where(DatasetDocument.id == document.metadata["document_id"])
  487. .first()
  488. )
  489. if dataset_document:
  490. if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
  491. child_chunk = (
  492. db.session.query(ChildChunk)
  493. .where(
  494. ChildChunk.index_node_id == document.metadata["doc_id"],
  495. ChildChunk.dataset_id == dataset_document.dataset_id,
  496. ChildChunk.document_id == dataset_document.id,
  497. )
  498. .first()
  499. )
  500. if child_chunk:
  501. segment = (
  502. db.session.query(DocumentSegment)
  503. .where(DocumentSegment.id == child_chunk.segment_id)
  504. .update(
  505. {DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
  506. synchronize_session=False,
  507. )
  508. )
  509. db.session.commit()
  510. else:
  511. query = db.session.query(DocumentSegment).where(
  512. DocumentSegment.index_node_id == document.metadata["doc_id"]
  513. )
  514. # if 'dataset_id' in document.metadata:
  515. if "dataset_id" in document.metadata:
  516. query = query.where(DocumentSegment.dataset_id == document.metadata["dataset_id"])
  517. # add hit count to document segment
  518. query.update(
  519. {DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False
  520. )
  521. db.session.commit()
  522. # get tracing instance
  523. trace_manager: TraceQueueManager | None = (
  524. self.application_generate_entity.trace_manager if self.application_generate_entity else None
  525. )
  526. if trace_manager:
  527. trace_manager.add_trace_task(
  528. TraceTask(
  529. TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
  530. )
  531. )
  532. def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
  533. """
  534. Handle query.
  535. """
  536. if not query:
  537. return
  538. dataset_queries = []
  539. for dataset_id in dataset_ids:
  540. dataset_query = DatasetQuery(
  541. dataset_id=dataset_id,
  542. content=query,
  543. source="app",
  544. source_app_id=app_id,
  545. created_by_role=user_from,
  546. created_by=user_id,
  547. )
  548. dataset_queries.append(dataset_query)
  549. if dataset_queries:
  550. db.session.add_all(dataset_queries)
  551. db.session.commit()
  552. def _retriever(
  553. self,
  554. flask_app: Flask,
  555. dataset_id: str,
  556. query: str,
  557. top_k: int,
  558. all_documents: list,
  559. document_ids_filter: Optional[list[str]] = None,
  560. metadata_condition: Optional[MetadataCondition] = None,
  561. ):
  562. with flask_app.app_context():
  563. with Session(db.engine) as session:
  564. dataset = session.query(Dataset).where(Dataset.id == dataset_id).first()
  565. if not dataset:
  566. return []
  567. if dataset.provider == "external":
  568. external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  569. tenant_id=dataset.tenant_id,
  570. dataset_id=dataset_id,
  571. query=query,
  572. external_retrieval_parameters=dataset.retrieval_model,
  573. metadata_condition=metadata_condition,
  574. )
  575. for external_document in external_documents:
  576. document = Document(
  577. page_content=external_document.get("content"),
  578. metadata=external_document.get("metadata"),
  579. provider="external",
  580. )
  581. if document.metadata is not None:
  582. document.metadata["score"] = external_document.get("score")
  583. document.metadata["title"] = external_document.get("title")
  584. document.metadata["dataset_id"] = dataset_id
  585. document.metadata["dataset_name"] = dataset.name
  586. all_documents.append(document)
  587. else:
  588. # get retrieval model , if the model is not setting , using default
  589. retrieval_model = dataset.retrieval_model or default_retrieval_model
  590. if dataset.indexing_technique == "economy":
  591. # use keyword table query
  592. documents = RetrievalService.retrieve(
  593. retrieval_method="keyword_search",
  594. dataset_id=dataset.id,
  595. query=query,
  596. top_k=top_k,
  597. document_ids_filter=document_ids_filter,
  598. )
  599. if documents:
  600. all_documents.extend(documents)
  601. else:
  602. if top_k > 0:
  603. # retrieval source
  604. documents = RetrievalService.retrieve(
  605. retrieval_method=retrieval_model["search_method"],
  606. dataset_id=dataset.id,
  607. query=query,
  608. top_k=retrieval_model.get("top_k") or 2,
  609. score_threshold=retrieval_model.get("score_threshold", 0.0)
  610. if retrieval_model["score_threshold_enabled"]
  611. else 0.0,
  612. reranking_model=retrieval_model.get("reranking_model", None)
  613. if retrieval_model["reranking_enable"]
  614. else None,
  615. reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
  616. weights=retrieval_model.get("weights", None),
  617. document_ids_filter=document_ids_filter,
  618. )
  619. all_documents.extend(documents)
  620. def to_dataset_retriever_tool(
  621. self,
  622. tenant_id: str,
  623. dataset_ids: list[str],
  624. retrieve_config: DatasetRetrieveConfigEntity,
  625. return_resource: bool,
  626. invoke_from: InvokeFrom,
  627. hit_callback: DatasetIndexToolCallbackHandler,
  628. user_id: str,
  629. inputs: dict,
  630. ) -> Optional[list[DatasetRetrieverBaseTool]]:
  631. """
  632. A dataset tool is a tool that can be used to retrieve information from a dataset
  633. :param tenant_id: tenant id
  634. :param dataset_ids: dataset ids
  635. :param retrieve_config: retrieve config
  636. :param return_resource: return resource
  637. :param invoke_from: invoke from
  638. :param hit_callback: hit callback
  639. """
  640. tools = []
  641. available_datasets = []
  642. for dataset_id in dataset_ids:
  643. # get dataset from dataset id
  644. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  645. # pass if dataset is not available
  646. if not dataset:
  647. continue
  648. # pass if dataset is not available
  649. if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
  650. continue
  651. available_datasets.append(dataset)
  652. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  653. # get retrieval model config
  654. default_retrieval_model = {
  655. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  656. "reranking_enable": False,
  657. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  658. "top_k": 2,
  659. "score_threshold_enabled": False,
  660. }
  661. for dataset in available_datasets:
  662. retrieval_model_config = dataset.retrieval_model or default_retrieval_model
  663. # get top k
  664. top_k = retrieval_model_config["top_k"]
  665. # get score threshold
  666. score_threshold = None
  667. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  668. if score_threshold_enabled:
  669. score_threshold = retrieval_model_config.get("score_threshold")
  670. from core.tools.utils.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
  671. tool = DatasetRetrieverTool.from_dataset(
  672. dataset=dataset,
  673. top_k=top_k,
  674. score_threshold=score_threshold,
  675. hit_callbacks=[hit_callback],
  676. return_resource=return_resource,
  677. retriever_from=invoke_from.to_source(),
  678. retrieve_config=retrieve_config,
  679. user_id=user_id,
  680. inputs=inputs,
  681. )
  682. tools.append(tool)
  683. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  684. from core.tools.utils.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
  685. if retrieve_config.reranking_model is None:
  686. raise ValueError("Reranking model is required for multiple retrieval")
  687. tool = DatasetMultiRetrieverTool.from_dataset(
  688. dataset_ids=[dataset.id for dataset in available_datasets],
  689. tenant_id=tenant_id,
  690. top_k=retrieve_config.top_k or 2,
  691. score_threshold=retrieve_config.score_threshold,
  692. hit_callbacks=[hit_callback],
  693. return_resource=return_resource,
  694. retriever_from=invoke_from.to_source(),
  695. reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
  696. reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
  697. )
  698. tools.append(tool)
  699. return tools
  700. def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
  701. """
  702. Calculate keywords scores
  703. :param query: search query
  704. :param documents: documents for reranking
  705. :param top_k: top k
  706. :return:
  707. """
  708. keyword_table_handler = JiebaKeywordTableHandler()
  709. query_keywords = keyword_table_handler.extract_keywords(query, None)
  710. documents_keywords = []
  711. for document in documents:
  712. if document.metadata is not None:
  713. # get the document keywords
  714. document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
  715. document.metadata["keywords"] = document_keywords
  716. documents_keywords.append(document_keywords)
  717. # Counter query keywords(TF)
  718. query_keyword_counts = Counter(query_keywords)
  719. # total documents
  720. total_documents = len(documents)
  721. # calculate all documents' keywords IDF
  722. all_keywords = set()
  723. for document_keywords in documents_keywords:
  724. all_keywords.update(document_keywords)
  725. keyword_idf = {}
  726. for keyword in all_keywords:
  727. # calculate include query keywords' documents
  728. doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
  729. # IDF
  730. keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
  731. query_tfidf = {}
  732. for keyword, count in query_keyword_counts.items():
  733. tf = count
  734. idf = keyword_idf.get(keyword, 0)
  735. query_tfidf[keyword] = tf * idf
  736. # calculate all documents' TF-IDF
  737. documents_tfidf = []
  738. for document_keywords in documents_keywords:
  739. document_keyword_counts = Counter(document_keywords)
  740. document_tfidf = {}
  741. for keyword, count in document_keyword_counts.items():
  742. tf = count
  743. idf = keyword_idf.get(keyword, 0)
  744. document_tfidf[keyword] = tf * idf
  745. documents_tfidf.append(document_tfidf)
  746. def cosine_similarity(vec1, vec2):
  747. intersection = set(vec1.keys()) & set(vec2.keys())
  748. numerator = sum(vec1[x] * vec2[x] for x in intersection)
  749. sum1 = sum(vec1[x] ** 2 for x in vec1)
  750. sum2 = sum(vec2[x] ** 2 for x in vec2)
  751. denominator = math.sqrt(sum1) * math.sqrt(sum2)
  752. if not denominator:
  753. return 0.0
  754. else:
  755. return float(numerator) / denominator
  756. similarities = []
  757. for document_tfidf in documents_tfidf:
  758. similarity = cosine_similarity(query_tfidf, document_tfidf)
  759. similarities.append(similarity)
  760. for document, score in zip(documents, similarities):
  761. # format document
  762. if document.metadata is not None:
  763. document.metadata["score"] = score
  764. documents = sorted(documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True)
  765. return documents[:top_k] if top_k else documents
  766. def calculate_vector_score(
  767. self, all_documents: list[Document], top_k: int, score_threshold: float
  768. ) -> list[Document]:
  769. filter_documents = []
  770. for document in all_documents:
  771. if score_threshold is None or (document.metadata and document.metadata.get("score", 0) >= score_threshold):
  772. filter_documents.append(document)
  773. if not filter_documents:
  774. return []
  775. filter_documents = sorted(
  776. filter_documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True
  777. )
  778. return filter_documents[:top_k] if top_k else filter_documents
  779. def get_metadata_filter_condition(
  780. self,
  781. dataset_ids: list,
  782. query: str,
  783. tenant_id: str,
  784. user_id: str,
  785. metadata_filtering_mode: str,
  786. metadata_model_config: ModelConfig,
  787. metadata_filtering_conditions: Optional[MetadataFilteringCondition],
  788. inputs: dict,
  789. ) -> tuple[Optional[dict[str, list[str]]], Optional[MetadataCondition]]:
  790. document_query = db.session.query(DatasetDocument).where(
  791. DatasetDocument.dataset_id.in_(dataset_ids),
  792. DatasetDocument.indexing_status == "completed",
  793. DatasetDocument.enabled == True,
  794. DatasetDocument.archived == False,
  795. )
  796. filters = [] # type: ignore
  797. metadata_condition = None
  798. if metadata_filtering_mode == "disabled":
  799. return None, None
  800. elif metadata_filtering_mode == "automatic":
  801. automatic_metadata_filters = self._automatic_metadata_filter_func(
  802. dataset_ids, query, tenant_id, user_id, metadata_model_config
  803. )
  804. if automatic_metadata_filters:
  805. conditions = []
  806. for sequence, filter in enumerate(automatic_metadata_filters):
  807. self._process_metadata_filter_func(
  808. sequence,
  809. filter.get("condition"), # type: ignore
  810. filter.get("metadata_name"), # type: ignore
  811. filter.get("value"),
  812. filters, # type: ignore
  813. )
  814. conditions.append(
  815. Condition(
  816. name=filter.get("metadata_name"), # type: ignore
  817. comparison_operator=filter.get("condition"), # type: ignore
  818. value=filter.get("value"),
  819. )
  820. )
  821. metadata_condition = MetadataCondition(
  822. logical_operator=metadata_filtering_conditions.logical_operator
  823. if metadata_filtering_conditions
  824. else "or", # type: ignore
  825. conditions=conditions,
  826. )
  827. elif metadata_filtering_mode == "manual":
  828. if metadata_filtering_conditions:
  829. conditions = []
  830. for sequence, condition in enumerate(metadata_filtering_conditions.conditions): # type: ignore
  831. metadata_name = condition.name
  832. expected_value = condition.value
  833. if expected_value is not None and condition.comparison_operator not in ("empty", "not empty"):
  834. if isinstance(expected_value, str):
  835. expected_value = self._replace_metadata_filter_value(expected_value, inputs)
  836. conditions.append(
  837. Condition(
  838. name=metadata_name,
  839. comparison_operator=condition.comparison_operator,
  840. value=expected_value,
  841. )
  842. )
  843. filters = self._process_metadata_filter_func(
  844. sequence,
  845. condition.comparison_operator,
  846. metadata_name,
  847. expected_value,
  848. filters,
  849. )
  850. metadata_condition = MetadataCondition(
  851. logical_operator=metadata_filtering_conditions.logical_operator,
  852. conditions=conditions,
  853. )
  854. else:
  855. raise ValueError("Invalid metadata filtering mode")
  856. if filters:
  857. if metadata_filtering_conditions and metadata_filtering_conditions.logical_operator == "and": # type: ignore
  858. document_query = document_query.where(and_(*filters))
  859. else:
  860. document_query = document_query.where(or_(*filters))
  861. documents = document_query.all()
  862. # group by dataset_id
  863. metadata_filter_document_ids = defaultdict(list) if documents else None # type: ignore
  864. for document in documents:
  865. metadata_filter_document_ids[document.dataset_id].append(document.id) # type: ignore
  866. return metadata_filter_document_ids, metadata_condition
  867. def _replace_metadata_filter_value(self, text: str, inputs: dict) -> str:
  868. if not inputs:
  869. return text
  870. def replacer(match):
  871. key = match.group(1)
  872. return str(inputs.get(key, f"{{{{{key}}}}}"))
  873. pattern = re.compile(r"\{\{(\w+)\}\}")
  874. output = pattern.sub(replacer, text)
  875. if isinstance(output, str):
  876. output = re.sub(r"[\r\n\t]+", " ", output).strip()
  877. return output
  878. def _automatic_metadata_filter_func(
  879. self, dataset_ids: list, query: str, tenant_id: str, user_id: str, metadata_model_config: ModelConfig
  880. ) -> Optional[list[dict[str, Any]]]:
  881. # get all metadata field
  882. metadata_fields = db.session.query(DatasetMetadata).where(DatasetMetadata.dataset_id.in_(dataset_ids)).all()
  883. all_metadata_fields = [metadata_field.name for metadata_field in metadata_fields]
  884. # get metadata model config
  885. if metadata_model_config is None:
  886. raise ValueError("metadata_model_config is required")
  887. # get metadata model instance
  888. # fetch model config
  889. model_instance, model_config = self._fetch_model_config(tenant_id, metadata_model_config)
  890. # fetch prompt messages
  891. prompt_messages, stop = self._get_prompt_template(
  892. model_config=model_config,
  893. mode=metadata_model_config.mode,
  894. metadata_fields=all_metadata_fields,
  895. query=query or "",
  896. )
  897. result_text = ""
  898. try:
  899. # handle invoke result
  900. invoke_result = cast(
  901. Generator[LLMResult, None, None],
  902. model_instance.invoke_llm(
  903. prompt_messages=prompt_messages,
  904. model_parameters=model_config.parameters,
  905. stop=stop,
  906. stream=True,
  907. user=user_id,
  908. ),
  909. )
  910. # handle invoke result
  911. result_text, usage = self._handle_invoke_result(invoke_result=invoke_result)
  912. result_text_json = parse_and_check_json_markdown(result_text, [])
  913. automatic_metadata_filters = []
  914. if "metadata_map" in result_text_json:
  915. metadata_map = result_text_json["metadata_map"]
  916. for item in metadata_map:
  917. if item.get("metadata_field_name") in all_metadata_fields:
  918. automatic_metadata_filters.append(
  919. {
  920. "metadata_name": item.get("metadata_field_name"),
  921. "value": item.get("metadata_field_value"),
  922. "condition": item.get("comparison_operator"),
  923. }
  924. )
  925. except Exception as e:
  926. return None
  927. return automatic_metadata_filters
  928. def _process_metadata_filter_func(
  929. self, sequence: int, condition: str, metadata_name: str, value: Optional[Any], filters: list
  930. ):
  931. if value is None:
  932. return
  933. key = f"{metadata_name}_{sequence}"
  934. key_value = f"{metadata_name}_{sequence}_value"
  935. match condition:
  936. case "contains":
  937. filters.append(
  938. (text(f"documents.doc_metadata ->> :{key} LIKE :{key_value}")).params(
  939. **{key: metadata_name, key_value: f"%{value}%"}
  940. )
  941. )
  942. case "not contains":
  943. filters.append(
  944. (text(f"documents.doc_metadata ->> :{key} NOT LIKE :{key_value}")).params(
  945. **{key: metadata_name, key_value: f"%{value}%"}
  946. )
  947. )
  948. case "start with":
  949. filters.append(
  950. (text(f"documents.doc_metadata ->> :{key} LIKE :{key_value}")).params(
  951. **{key: metadata_name, key_value: f"{value}%"}
  952. )
  953. )
  954. case "end with":
  955. filters.append(
  956. (text(f"documents.doc_metadata ->> :{key} LIKE :{key_value}")).params(
  957. **{key: metadata_name, key_value: f"%{value}"}
  958. )
  959. )
  960. case "is" | "=":
  961. if isinstance(value, str):
  962. filters.append(DatasetDocument.doc_metadata[metadata_name] == f'"{value}"')
  963. else:
  964. filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) == value)
  965. case "is not" | "≠":
  966. if isinstance(value, str):
  967. filters.append(DatasetDocument.doc_metadata[metadata_name] != f'"{value}"')
  968. else:
  969. filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) != value)
  970. case "empty":
  971. filters.append(DatasetDocument.doc_metadata[metadata_name].is_(None))
  972. case "not empty":
  973. filters.append(DatasetDocument.doc_metadata[metadata_name].isnot(None))
  974. case "before" | "<":
  975. filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) < value)
  976. case "after" | ">":
  977. filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) > value)
  978. case "≤" | "<=":
  979. filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) <= value)
  980. case "≥" | ">=":
  981. filters.append(sqlalchemy_cast(DatasetDocument.doc_metadata[metadata_name].astext, Float) >= value)
  982. case _:
  983. pass
  984. return filters
  985. def _fetch_model_config(
  986. self, tenant_id: str, model: ModelConfig
  987. ) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
  988. """
  989. Fetch model config
  990. """
  991. if model is None:
  992. raise ValueError("single_retrieval_config is required")
  993. model_name = model.name
  994. provider_name = model.provider
  995. model_manager = ModelManager()
  996. model_instance = model_manager.get_model_instance(
  997. tenant_id=tenant_id, model_type=ModelType.LLM, provider=provider_name, model=model_name
  998. )
  999. provider_model_bundle = model_instance.provider_model_bundle
  1000. model_type_instance = model_instance.model_type_instance
  1001. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  1002. model_credentials = model_instance.credentials
  1003. # check model
  1004. provider_model = provider_model_bundle.configuration.get_provider_model(
  1005. model=model_name, model_type=ModelType.LLM
  1006. )
  1007. if provider_model is None:
  1008. raise ValueError(f"Model {model_name} not exist.")
  1009. if provider_model.status == ModelStatus.NO_CONFIGURE:
  1010. raise ValueError(f"Model {model_name} credentials is not initialized.")
  1011. elif provider_model.status == ModelStatus.NO_PERMISSION:
  1012. raise ValueError(f"Dify Hosted OpenAI {model_name} currently not support.")
  1013. elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
  1014. raise ValueError(f"Model provider {provider_name} quota exceeded.")
  1015. # model config
  1016. completion_params = model.completion_params
  1017. stop = []
  1018. if "stop" in completion_params:
  1019. stop = completion_params["stop"]
  1020. del completion_params["stop"]
  1021. # get model mode
  1022. model_mode = model.mode
  1023. if not model_mode:
  1024. raise ValueError("LLM mode is required.")
  1025. model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
  1026. if not model_schema:
  1027. raise ValueError(f"Model {model_name} not exist.")
  1028. return model_instance, ModelConfigWithCredentialsEntity(
  1029. provider=provider_name,
  1030. model=model_name,
  1031. model_schema=model_schema,
  1032. mode=model_mode,
  1033. provider_model_bundle=provider_model_bundle,
  1034. credentials=model_credentials,
  1035. parameters=completion_params,
  1036. stop=stop,
  1037. )
  1038. def _get_prompt_template(
  1039. self, model_config: ModelConfigWithCredentialsEntity, mode: str, metadata_fields: list, query: str
  1040. ):
  1041. model_mode = ModelMode(mode)
  1042. input_text = query
  1043. prompt_template: Union[CompletionModelPromptTemplate, list[ChatModelMessage]]
  1044. if model_mode == ModelMode.CHAT:
  1045. prompt_template = []
  1046. system_prompt_messages = ChatModelMessage(role=PromptMessageRole.SYSTEM, text=METADATA_FILTER_SYSTEM_PROMPT)
  1047. prompt_template.append(system_prompt_messages)
  1048. user_prompt_message_1 = ChatModelMessage(role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_1)
  1049. prompt_template.append(user_prompt_message_1)
  1050. assistant_prompt_message_1 = ChatModelMessage(
  1051. role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_1
  1052. )
  1053. prompt_template.append(assistant_prompt_message_1)
  1054. user_prompt_message_2 = ChatModelMessage(role=PromptMessageRole.USER, text=METADATA_FILTER_USER_PROMPT_2)
  1055. prompt_template.append(user_prompt_message_2)
  1056. assistant_prompt_message_2 = ChatModelMessage(
  1057. role=PromptMessageRole.ASSISTANT, text=METADATA_FILTER_ASSISTANT_PROMPT_2
  1058. )
  1059. prompt_template.append(assistant_prompt_message_2)
  1060. user_prompt_message_3 = ChatModelMessage(
  1061. role=PromptMessageRole.USER,
  1062. text=METADATA_FILTER_USER_PROMPT_3.format(
  1063. input_text=input_text,
  1064. metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
  1065. ),
  1066. )
  1067. prompt_template.append(user_prompt_message_3)
  1068. elif model_mode == ModelMode.COMPLETION:
  1069. prompt_template = CompletionModelPromptTemplate(
  1070. text=METADATA_FILTER_COMPLETION_PROMPT.format(
  1071. input_text=input_text,
  1072. metadata_fields=json.dumps(metadata_fields, ensure_ascii=False),
  1073. )
  1074. )
  1075. else:
  1076. raise ValueError(f"Model mode {model_mode} not support.")
  1077. prompt_transform = AdvancedPromptTransform()
  1078. prompt_messages = prompt_transform.get_prompt(
  1079. prompt_template=prompt_template,
  1080. inputs={},
  1081. query=query or "",
  1082. files=[],
  1083. context=None,
  1084. memory_config=None,
  1085. memory=None,
  1086. model_config=model_config,
  1087. )
  1088. stop = model_config.stop
  1089. return prompt_messages, stop
  1090. def _handle_invoke_result(self, invoke_result: Generator) -> tuple[str, LLMUsage]:
  1091. """
  1092. Handle invoke result
  1093. :param invoke_result: invoke result
  1094. :return:
  1095. """
  1096. model = None
  1097. prompt_messages: list[PromptMessage] = []
  1098. full_text = ""
  1099. usage = None
  1100. for result in invoke_result:
  1101. text = result.delta.message.content
  1102. full_text += text
  1103. if not model:
  1104. model = result.model
  1105. if not prompt_messages:
  1106. prompt_messages = result.prompt_messages
  1107. if not usage and result.delta.usage:
  1108. usage = result.delta.usage
  1109. if not usage:
  1110. usage = LLMUsage.empty_usage()
  1111. return full_text, usage