| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594 | 
							- import json
 - 
 - from flask import request
 - from flask_restful import marshal, reqparse
 - from sqlalchemy import desc, select
 - from werkzeug.exceptions import Forbidden, NotFound
 - 
 - import services
 - from controllers.common.errors import FilenameNotExistsError
 - from controllers.service_api import api
 - from controllers.service_api.app.error import (
 -     FileTooLargeError,
 -     NoFileUploadedError,
 -     ProviderNotInitializeError,
 -     TooManyFilesError,
 -     UnsupportedFileTypeError,
 - )
 - from controllers.service_api.dataset.error import (
 -     ArchivedDocumentImmutableError,
 -     DocumentIndexingError,
 -     InvalidMetadataError,
 - )
 - from controllers.service_api.wraps import (
 -     DatasetApiResource,
 -     cloud_edition_billing_rate_limit_check,
 -     cloud_edition_billing_resource_check,
 - )
 - from core.errors.error import ProviderTokenNotInitError
 - from extensions.ext_database import db
 - from fields.document_fields import document_fields, document_status_fields
 - from libs.login import current_user
 - from models.dataset import Dataset, Document, DocumentSegment
 - from services.dataset_service import DatasetService, DocumentService
 - from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
 - from services.file_service import FileService
 - 
 - 
 - class DocumentAddByTextApi(DatasetApiResource):
 -     """Resource for documents."""
 - 
 -     @cloud_edition_billing_resource_check("vector_space", "dataset")
 -     @cloud_edition_billing_resource_check("documents", "dataset")
 -     @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
 -     def post(self, tenant_id, dataset_id):
 -         """Create document by text."""
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("name", type=str, required=True, nullable=False, location="json")
 -         parser.add_argument("text", type=str, required=True, nullable=False, location="json")
 -         parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
 -         parser.add_argument("original_document_id", type=str, required=False, location="json")
 -         parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
 -         parser.add_argument(
 -             "doc_language", type=str, default="English", required=False, nullable=False, location="json"
 -         )
 -         parser.add_argument(
 -             "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
 -         )
 -         parser.add_argument("retrieval_model", type=dict, required=False, nullable=True, location="json")
 -         parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
 -         parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")
 - 
 -         args = parser.parse_args()
 - 
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 - 
 -         if not dataset:
 -             raise ValueError("Dataset does not exist.")
 - 
 -         if not dataset.indexing_technique and not args["indexing_technique"]:
 -             raise ValueError("indexing_technique is required.")
 - 
 -         text = args.get("text")
 -         name = args.get("name")
 -         if text is None or name is None:
 -             raise ValueError("Both 'text' and 'name' must be non-null values.")
 - 
 -         if args.get("embedding_model_provider"):
 -             DatasetService.check_embedding_model_setting(
 -                 tenant_id, args.get("embedding_model_provider"), args.get("embedding_model")
 -             )
 -         if (
 -             args.get("retrieval_model")
 -             and args.get("retrieval_model").get("reranking_model")
 -             and args.get("retrieval_model").get("reranking_model").get("reranking_provider_name")
 -         ):
 -             DatasetService.check_reranking_model_setting(
 -                 tenant_id,
 -                 args.get("retrieval_model").get("reranking_model").get("reranking_provider_name"),
 -                 args.get("retrieval_model").get("reranking_model").get("reranking_model_name"),
 -             )
 - 
 -         upload_file = FileService.upload_text(text=str(text), text_name=str(name))
 -         data_source = {
 -             "type": "upload_file",
 -             "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
 -         }
 -         args["data_source"] = data_source
 -         knowledge_config = KnowledgeConfig(**args)
 -         # validate args
 -         DocumentService.document_create_args_validate(knowledge_config)
 - 
 -         try:
 -             documents, batch = DocumentService.save_document_with_dataset_id(
 -                 dataset=dataset,
 -                 knowledge_config=knowledge_config,
 -                 account=current_user,
 -                 dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
 -                 created_from="api",
 -             )
 -         except ProviderTokenNotInitError as ex:
 -             raise ProviderNotInitializeError(ex.description)
 -         document = documents[0]
 - 
 -         documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
 -         return documents_and_batch_fields, 200
 - 
 - 
 - class DocumentUpdateByTextApi(DatasetApiResource):
 -     """Resource for update documents."""
 - 
 -     @cloud_edition_billing_resource_check("vector_space", "dataset")
 -     @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
 -     def post(self, tenant_id, dataset_id, document_id):
 -         """Update document by text."""
 -         parser = reqparse.RequestParser()
 -         parser.add_argument("name", type=str, required=False, nullable=True, location="json")
 -         parser.add_argument("text", type=str, required=False, nullable=True, location="json")
 -         parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
 -         parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
 -         parser.add_argument(
 -             "doc_language", type=str, default="English", required=False, nullable=False, location="json"
 -         )
 -         parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
 -         args = parser.parse_args()
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 - 
 -         if not dataset:
 -             raise ValueError("Dataset does not exist.")
 - 
 -         if (
 -             args.get("retrieval_model")
 -             and args.get("retrieval_model").get("reranking_model")
 -             and args.get("retrieval_model").get("reranking_model").get("reranking_provider_name")
 -         ):
 -             DatasetService.check_reranking_model_setting(
 -                 tenant_id,
 -                 args.get("retrieval_model").get("reranking_model").get("reranking_provider_name"),
 -                 args.get("retrieval_model").get("reranking_model").get("reranking_model_name"),
 -             )
 - 
 -         # indexing_technique is already set in dataset since this is an update
 -         args["indexing_technique"] = dataset.indexing_technique
 - 
 -         if args["text"]:
 -             text = args.get("text")
 -             name = args.get("name")
 -             if text is None or name is None:
 -                 raise ValueError("Both text and name must be strings.")
 -             upload_file = FileService.upload_text(text=str(text), text_name=str(name))
 -             data_source = {
 -                 "type": "upload_file",
 -                 "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
 -             }
 -             args["data_source"] = data_source
 -         # validate args
 -         args["original_document_id"] = str(document_id)
 -         knowledge_config = KnowledgeConfig(**args)
 -         DocumentService.document_create_args_validate(knowledge_config)
 - 
 -         try:
 -             documents, batch = DocumentService.save_document_with_dataset_id(
 -                 dataset=dataset,
 -                 knowledge_config=knowledge_config,
 -                 account=current_user,
 -                 dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
 -                 created_from="api",
 -             )
 -         except ProviderTokenNotInitError as ex:
 -             raise ProviderNotInitializeError(ex.description)
 -         document = documents[0]
 - 
 -         documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
 -         return documents_and_batch_fields, 200
 - 
 - 
 - class DocumentAddByFileApi(DatasetApiResource):
 -     """Resource for documents."""
 - 
 -     @cloud_edition_billing_resource_check("vector_space", "dataset")
 -     @cloud_edition_billing_resource_check("documents", "dataset")
 -     @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
 -     def post(self, tenant_id, dataset_id):
 -         """Create document by upload file."""
 -         args = {}
 -         if "data" in request.form:
 -             args = json.loads(request.form["data"])
 -         if "doc_form" not in args:
 -             args["doc_form"] = "text_model"
 -         if "doc_language" not in args:
 -             args["doc_language"] = "English"
 - 
 -         # get dataset info
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 - 
 -         if not dataset:
 -             raise ValueError("Dataset does not exist.")
 - 
 -         if dataset.provider == "external":
 -             raise ValueError("External datasets are not supported.")
 - 
 -         indexing_technique = args.get("indexing_technique") or dataset.indexing_technique
 -         if not indexing_technique:
 -             raise ValueError("indexing_technique is required.")
 -         args["indexing_technique"] = indexing_technique
 - 
 -         if "embedding_model_provider" in args:
 -             DatasetService.check_embedding_model_setting(
 -                 tenant_id, args["embedding_model_provider"], args["embedding_model"]
 -             )
 -         if (
 -             "retrieval_model" in args
 -             and args["retrieval_model"].get("reranking_model")
 -             and args["retrieval_model"].get("reranking_model").get("reranking_provider_name")
 -         ):
 -             DatasetService.check_reranking_model_setting(
 -                 tenant_id,
 -                 args["retrieval_model"].get("reranking_model").get("reranking_provider_name"),
 -                 args["retrieval_model"].get("reranking_model").get("reranking_model_name"),
 -             )
 - 
 -         # save file info
 -         file = request.files["file"]
 -         # check file
 -         if "file" not in request.files:
 -             raise NoFileUploadedError()
 - 
 -         if len(request.files) > 1:
 -             raise TooManyFilesError()
 - 
 -         if not file.filename:
 -             raise FilenameNotExistsError
 - 
 -         upload_file = FileService.upload_file(
 -             filename=file.filename,
 -             content=file.read(),
 -             mimetype=file.mimetype,
 -             user=current_user,
 -             source="datasets",
 -         )
 -         data_source = {
 -             "type": "upload_file",
 -             "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
 -         }
 -         args["data_source"] = data_source
 -         # validate args
 -         knowledge_config = KnowledgeConfig(**args)
 -         DocumentService.document_create_args_validate(knowledge_config)
 - 
 -         dataset_process_rule = dataset.latest_process_rule if "process_rule" not in args else None
 -         if not knowledge_config.original_document_id and not dataset_process_rule and not knowledge_config.process_rule:
 -             raise ValueError("process_rule is required.")
 - 
 -         try:
 -             documents, batch = DocumentService.save_document_with_dataset_id(
 -                 dataset=dataset,
 -                 knowledge_config=knowledge_config,
 -                 account=dataset.created_by_account,
 -                 dataset_process_rule=dataset_process_rule,
 -                 created_from="api",
 -             )
 -         except ProviderTokenNotInitError as ex:
 -             raise ProviderNotInitializeError(ex.description)
 -         document = documents[0]
 -         documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
 -         return documents_and_batch_fields, 200
 - 
 - 
 - class DocumentUpdateByFileApi(DatasetApiResource):
 -     """Resource for update documents."""
 - 
 -     @cloud_edition_billing_resource_check("vector_space", "dataset")
 -     @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
 -     def post(self, tenant_id, dataset_id, document_id):
 -         """Update document by upload file."""
 -         args = {}
 -         if "data" in request.form:
 -             args = json.loads(request.form["data"])
 -         if "doc_form" not in args:
 -             args["doc_form"] = "text_model"
 -         if "doc_language" not in args:
 -             args["doc_language"] = "English"
 - 
 -         # get dataset info
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 - 
 -         if not dataset:
 -             raise ValueError("Dataset does not exist.")
 - 
 -         if dataset.provider == "external":
 -             raise ValueError("External datasets are not supported.")
 - 
 -         # indexing_technique is already set in dataset since this is an update
 -         args["indexing_technique"] = dataset.indexing_technique
 - 
 -         if "file" in request.files:
 -             # save file info
 -             file = request.files["file"]
 - 
 -             if len(request.files) > 1:
 -                 raise TooManyFilesError()
 - 
 -             if not file.filename:
 -                 raise FilenameNotExistsError
 - 
 -             try:
 -                 upload_file = FileService.upload_file(
 -                     filename=file.filename,
 -                     content=file.read(),
 -                     mimetype=file.mimetype,
 -                     user=current_user,
 -                     source="datasets",
 -                 )
 -             except services.errors.file.FileTooLargeError as file_too_large_error:
 -                 raise FileTooLargeError(file_too_large_error.description)
 -             except services.errors.file.UnsupportedFileTypeError:
 -                 raise UnsupportedFileTypeError()
 -             data_source = {
 -                 "type": "upload_file",
 -                 "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
 -             }
 -             args["data_source"] = data_source
 -         # validate args
 -         args["original_document_id"] = str(document_id)
 - 
 -         knowledge_config = KnowledgeConfig(**args)
 -         DocumentService.document_create_args_validate(knowledge_config)
 - 
 -         try:
 -             documents, batch = DocumentService.save_document_with_dataset_id(
 -                 dataset=dataset,
 -                 knowledge_config=knowledge_config,
 -                 account=dataset.created_by_account,
 -                 dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
 -                 created_from="api",
 -             )
 -         except ProviderTokenNotInitError as ex:
 -             raise ProviderNotInitializeError(ex.description)
 -         document = documents[0]
 -         documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
 -         return documents_and_batch_fields, 200
 - 
 - 
 - class DocumentDeleteApi(DatasetApiResource):
 -     @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
 -     def delete(self, tenant_id, dataset_id, document_id):
 -         """Delete document."""
 -         document_id = str(document_id)
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 - 
 -         # get dataset info
 -         dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 - 
 -         if not dataset:
 -             raise ValueError("Dataset does not exist.")
 - 
 -         document = DocumentService.get_document(dataset.id, document_id)
 - 
 -         # 404 if document not found
 -         if document is None:
 -             raise NotFound("Document Not Exists.")
 - 
 -         # 403 if document is archived
 -         if DocumentService.check_archived(document):
 -             raise ArchivedDocumentImmutableError()
 - 
 -         try:
 -             # delete document
 -             DocumentService.delete_document(document)
 -         except services.errors.document.DocumentIndexingError:
 -             raise DocumentIndexingError("Cannot delete document during indexing.")
 - 
 -         return 204
 - 
 - 
 - class DocumentListApi(DatasetApiResource):
 -     def get(self, tenant_id, dataset_id):
 -         dataset_id = str(dataset_id)
 -         tenant_id = str(tenant_id)
 -         page = request.args.get("page", default=1, type=int)
 -         limit = request.args.get("limit", default=20, type=int)
 -         search = request.args.get("keyword", default=None, type=str)
 -         dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 - 
 -         query = select(Document).filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
 - 
 -         if search:
 -             search = f"%{search}%"
 -             query = query.where(Document.name.like(search))
 - 
 -         query = query.order_by(desc(Document.created_at), desc(Document.position))
 - 
 -         paginated_documents = db.paginate(select=query, page=page, per_page=limit, max_per_page=100, error_out=False)
 -         documents = paginated_documents.items
 - 
 -         response = {
 -             "data": marshal(documents, document_fields),
 -             "has_more": len(documents) == limit,
 -             "limit": limit,
 -             "total": paginated_documents.total,
 -             "page": page,
 -         }
 - 
 -         return response
 - 
 - 
 - class DocumentIndexingStatusApi(DatasetApiResource):
 -     def get(self, tenant_id, dataset_id, batch):
 -         dataset_id = str(dataset_id)
 -         batch = str(batch)
 -         tenant_id = str(tenant_id)
 -         # get dataset
 -         dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
 -         if not dataset:
 -             raise NotFound("Dataset not found.")
 -         # get documents
 -         documents = DocumentService.get_batch_documents(dataset_id, batch)
 -         if not documents:
 -             raise NotFound("Documents not found.")
 -         documents_status = []
 -         for document in documents:
 -             completed_segments = (
 -                 db.session.query(DocumentSegment)
 -                 .where(
 -                     DocumentSegment.completed_at.isnot(None),
 -                     DocumentSegment.document_id == str(document.id),
 -                     DocumentSegment.status != "re_segment",
 -                 )
 -                 .count()
 -             )
 -             total_segments = (
 -                 db.session.query(DocumentSegment)
 -                 .where(DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment")
 -                 .count()
 -             )
 -             # Create a dictionary with document attributes and additional fields
 -             document_dict = {
 -                 "id": document.id,
 -                 "indexing_status": "paused" if document.is_paused else document.indexing_status,
 -                 "processing_started_at": document.processing_started_at,
 -                 "parsing_completed_at": document.parsing_completed_at,
 -                 "cleaning_completed_at": document.cleaning_completed_at,
 -                 "splitting_completed_at": document.splitting_completed_at,
 -                 "completed_at": document.completed_at,
 -                 "paused_at": document.paused_at,
 -                 "error": document.error,
 -                 "stopped_at": document.stopped_at,
 -                 "completed_segments": completed_segments,
 -                 "total_segments": total_segments,
 -             }
 -             documents_status.append(marshal(document_dict, document_status_fields))
 -         data = {"data": documents_status}
 -         return data
 - 
 - 
 - class DocumentDetailApi(DatasetApiResource):
 -     METADATA_CHOICES = {"all", "only", "without"}
 - 
 -     def get(self, tenant_id, dataset_id, document_id):
 -         dataset_id = str(dataset_id)
 -         document_id = str(document_id)
 - 
 -         dataset = self.get_dataset(dataset_id, tenant_id)
 - 
 -         document = DocumentService.get_document(dataset.id, document_id)
 - 
 -         if not document:
 -             raise NotFound("Document not found.")
 - 
 -         if document.tenant_id != str(tenant_id):
 -             raise Forbidden("No permission.")
 - 
 -         metadata = request.args.get("metadata", "all")
 -         if metadata not in self.METADATA_CHOICES:
 -             raise InvalidMetadataError(f"Invalid metadata value: {metadata}")
 - 
 -         if metadata == "only":
 -             response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata_details}
 -         elif metadata == "without":
 -             dataset_process_rules = DatasetService.get_process_rules(dataset_id)
 -             document_process_rules = document.dataset_process_rule.to_dict()
 -             data_source_info = document.data_source_detail_dict
 -             response = {
 -                 "id": document.id,
 -                 "position": document.position,
 -                 "data_source_type": document.data_source_type,
 -                 "data_source_info": data_source_info,
 -                 "dataset_process_rule_id": document.dataset_process_rule_id,
 -                 "dataset_process_rule": dataset_process_rules,
 -                 "document_process_rule": document_process_rules,
 -                 "name": document.name,
 -                 "created_from": document.created_from,
 -                 "created_by": document.created_by,
 -                 "created_at": document.created_at.timestamp(),
 -                 "tokens": document.tokens,
 -                 "indexing_status": document.indexing_status,
 -                 "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
 -                 "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
 -                 "indexing_latency": document.indexing_latency,
 -                 "error": document.error,
 -                 "enabled": document.enabled,
 -                 "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
 -                 "disabled_by": document.disabled_by,
 -                 "archived": document.archived,
 -                 "segment_count": document.segment_count,
 -                 "average_segment_length": document.average_segment_length,
 -                 "hit_count": document.hit_count,
 -                 "display_status": document.display_status,
 -                 "doc_form": document.doc_form,
 -                 "doc_language": document.doc_language,
 -             }
 -         else:
 -             dataset_process_rules = DatasetService.get_process_rules(dataset_id)
 -             document_process_rules = document.dataset_process_rule.to_dict()
 -             data_source_info = document.data_source_detail_dict
 -             response = {
 -                 "id": document.id,
 -                 "position": document.position,
 -                 "data_source_type": document.data_source_type,
 -                 "data_source_info": data_source_info,
 -                 "dataset_process_rule_id": document.dataset_process_rule_id,
 -                 "dataset_process_rule": dataset_process_rules,
 -                 "document_process_rule": document_process_rules,
 -                 "name": document.name,
 -                 "created_from": document.created_from,
 -                 "created_by": document.created_by,
 -                 "created_at": document.created_at.timestamp(),
 -                 "tokens": document.tokens,
 -                 "indexing_status": document.indexing_status,
 -                 "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
 -                 "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
 -                 "indexing_latency": document.indexing_latency,
 -                 "error": document.error,
 -                 "enabled": document.enabled,
 -                 "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
 -                 "disabled_by": document.disabled_by,
 -                 "archived": document.archived,
 -                 "doc_type": document.doc_type,
 -                 "doc_metadata": document.doc_metadata_details,
 -                 "segment_count": document.segment_count,
 -                 "average_segment_length": document.average_segment_length,
 -                 "hit_count": document.hit_count,
 -                 "display_status": document.display_status,
 -                 "doc_form": document.doc_form,
 -                 "doc_language": document.doc_language,
 -             }
 - 
 -         return response
 - 
 - 
 - api.add_resource(
 -     DocumentAddByTextApi,
 -     "/datasets/<uuid:dataset_id>/document/create_by_text",
 -     "/datasets/<uuid:dataset_id>/document/create-by-text",
 - )
 - api.add_resource(
 -     DocumentAddByFileApi,
 -     "/datasets/<uuid:dataset_id>/document/create_by_file",
 -     "/datasets/<uuid:dataset_id>/document/create-by-file",
 - )
 - api.add_resource(
 -     DocumentUpdateByTextApi,
 -     "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
 -     "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
 - )
 - api.add_resource(
 -     DocumentUpdateByFileApi,
 -     "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
 -     "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
 - )
 - api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
 - api.add_resource(DocumentListApi, "/datasets/<uuid:dataset_id>/documents")
 - api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")
 - api.add_resource(DocumentDetailApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
 
 
  |