您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
Ethan ea748b50f2
fix: an issue of keyword search feature in application log list (#7816)
1年前
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1年前
.vscode chore: remove .idea and .vscode from root path (#7437) 1年前
configs feat: support configs for code execution request (#7704) 1年前
constants chore(api): Introduce Ruff Formatter. (#7291) 1年前
contexts chore(api): Introduce Ruff Formatter. (#7291) 1年前
controllers fix: an issue of keyword search feature in application log list (#7816) 1年前
core feat: add zhipu glm_4_plus and glm_4v_plus model (#7824) 1年前
docker fix: use LOG_LEVEL for celery startup (#7628) 1年前
events feat: store created_by and updated_by for apps, modelconfigs, and sites (#7613) 1年前
extensions chore: ignore openai error record in sentry (#7770) 1年前
fields feat: store created_by and updated_by for apps, modelconfigs, and sites (#7613) 1年前
libs feat: custom app icon (#7196) 1年前
migrations feat: store created_by and updated_by for apps, modelconfigs, and sites (#7613) 1年前
models feat: store created_by and updated_by for apps, modelconfigs, and sites (#7613) 1年前
schedule chore(api): Introduce Ruff Formatter. (#7291) 1年前
services enhance: include workspace name in create-tenant command (#7834) 1年前
tasks chore(api/tasks): apply ruff reformatting (#7594) 1年前
templates feat: implement forgot password feature (#5534) 1年前
tests feat: support configs for code execution request (#7704) 1年前
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1年前
.env.example Feat/7134 use dataset api create a dataset with permission (#7508) 1年前
Dockerfile Update package "libldap-2.5-0" for docker build. (#7726) 1年前
README.md Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 1年前
app.py chore(api): Introduce Ruff Formatter. (#7291) 1年前
commands.py enhance: include workspace name in create-tenant command (#7834) 1年前
poetry.lock feat: support configs for code execution request (#7704) 1年前
poetry.toml build: initial support for poetry build tool (#4513) 1年前
pyproject.toml feat: support configs for code execution request (#7704) 1年前

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh