You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

document.py 29KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680
  1. import json
  2. from flask import request
  3. from flask_restx import marshal, reqparse
  4. from sqlalchemy import desc, select
  5. from werkzeug.exceptions import Forbidden, NotFound
  6. import services
  7. from controllers.common.errors import (
  8. FilenameNotExistsError,
  9. FileTooLargeError,
  10. NoFileUploadedError,
  11. TooManyFilesError,
  12. UnsupportedFileTypeError,
  13. )
  14. from controllers.service_api import service_api_ns
  15. from controllers.service_api.app.error import ProviderNotInitializeError
  16. from controllers.service_api.dataset.error import (
  17. ArchivedDocumentImmutableError,
  18. DocumentIndexingError,
  19. InvalidMetadataError,
  20. )
  21. from controllers.service_api.wraps import (
  22. DatasetApiResource,
  23. cloud_edition_billing_rate_limit_check,
  24. cloud_edition_billing_resource_check,
  25. )
  26. from core.errors.error import ProviderTokenNotInitError
  27. from extensions.ext_database import db
  28. from fields.document_fields import document_fields, document_status_fields
  29. from libs.login import current_user
  30. from models.dataset import Dataset, Document, DocumentSegment
  31. from services.dataset_service import DatasetService, DocumentService
  32. from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
  33. from services.file_service import FileService
  34. # Define parsers for document operations
  35. document_text_create_parser = reqparse.RequestParser()
  36. document_text_create_parser.add_argument("name", type=str, required=True, nullable=False, location="json")
  37. document_text_create_parser.add_argument("text", type=str, required=True, nullable=False, location="json")
  38. document_text_create_parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  39. document_text_create_parser.add_argument("original_document_id", type=str, required=False, location="json")
  40. document_text_create_parser.add_argument(
  41. "doc_form", type=str, default="text_model", required=False, nullable=False, location="json"
  42. )
  43. document_text_create_parser.add_argument(
  44. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  45. )
  46. document_text_create_parser.add_argument(
  47. "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
  48. )
  49. document_text_create_parser.add_argument("retrieval_model", type=dict, required=False, nullable=True, location="json")
  50. document_text_create_parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
  51. document_text_create_parser.add_argument(
  52. "embedding_model_provider", type=str, required=False, nullable=True, location="json"
  53. )
  54. document_text_update_parser = reqparse.RequestParser()
  55. document_text_update_parser.add_argument("name", type=str, required=False, nullable=True, location="json")
  56. document_text_update_parser.add_argument("text", type=str, required=False, nullable=True, location="json")
  57. document_text_update_parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  58. document_text_update_parser.add_argument(
  59. "doc_form", type=str, default="text_model", required=False, nullable=False, location="json"
  60. )
  61. document_text_update_parser.add_argument(
  62. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  63. )
  64. document_text_update_parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  65. @service_api_ns.route(
  66. "/datasets/<uuid:dataset_id>/document/create_by_text",
  67. "/datasets/<uuid:dataset_id>/document/create-by-text",
  68. )
  69. class DocumentAddByTextApi(DatasetApiResource):
  70. """Resource for documents."""
  71. @service_api_ns.expect(document_text_create_parser)
  72. @service_api_ns.doc("create_document_by_text")
  73. @service_api_ns.doc(description="Create a new document by providing text content")
  74. @service_api_ns.doc(params={"dataset_id": "Dataset ID"})
  75. @service_api_ns.doc(
  76. responses={
  77. 200: "Document created successfully",
  78. 401: "Unauthorized - invalid API token",
  79. 400: "Bad request - invalid parameters",
  80. }
  81. )
  82. @cloud_edition_billing_resource_check("vector_space", "dataset")
  83. @cloud_edition_billing_resource_check("documents", "dataset")
  84. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  85. def post(self, tenant_id, dataset_id):
  86. """Create document by text."""
  87. args = document_text_create_parser.parse_args()
  88. dataset_id = str(dataset_id)
  89. tenant_id = str(tenant_id)
  90. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  91. if not dataset:
  92. raise ValueError("Dataset does not exist.")
  93. if not dataset.indexing_technique and not args["indexing_technique"]:
  94. raise ValueError("indexing_technique is required.")
  95. text = args.get("text")
  96. name = args.get("name")
  97. if text is None or name is None:
  98. raise ValueError("Both 'text' and 'name' must be non-null values.")
  99. if args.get("embedding_model_provider"):
  100. DatasetService.check_embedding_model_setting(
  101. tenant_id, args.get("embedding_model_provider"), args.get("embedding_model")
  102. )
  103. if (
  104. args.get("retrieval_model")
  105. and args.get("retrieval_model").get("reranking_model")
  106. and args.get("retrieval_model").get("reranking_model").get("reranking_provider_name")
  107. ):
  108. DatasetService.check_reranking_model_setting(
  109. tenant_id,
  110. args.get("retrieval_model").get("reranking_model").get("reranking_provider_name"),
  111. args.get("retrieval_model").get("reranking_model").get("reranking_model_name"),
  112. )
  113. upload_file = FileService(db.engine).upload_text(text=str(text), text_name=str(name))
  114. data_source = {
  115. "type": "upload_file",
  116. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  117. }
  118. args["data_source"] = data_source
  119. knowledge_config = KnowledgeConfig(**args)
  120. # validate args
  121. DocumentService.document_create_args_validate(knowledge_config)
  122. if not current_user:
  123. raise ValueError("current_user is required")
  124. try:
  125. documents, batch = DocumentService.save_document_with_dataset_id(
  126. dataset=dataset,
  127. knowledge_config=knowledge_config,
  128. account=current_user,
  129. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  130. created_from="api",
  131. )
  132. except ProviderTokenNotInitError as ex:
  133. raise ProviderNotInitializeError(ex.description)
  134. document = documents[0]
  135. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  136. return documents_and_batch_fields, 200
  137. @service_api_ns.route(
  138. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
  139. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
  140. )
  141. class DocumentUpdateByTextApi(DatasetApiResource):
  142. """Resource for update documents."""
  143. @service_api_ns.expect(document_text_update_parser)
  144. @service_api_ns.doc("update_document_by_text")
  145. @service_api_ns.doc(description="Update an existing document by providing text content")
  146. @service_api_ns.doc(params={"dataset_id": "Dataset ID", "document_id": "Document ID"})
  147. @service_api_ns.doc(
  148. responses={
  149. 200: "Document updated successfully",
  150. 401: "Unauthorized - invalid API token",
  151. 404: "Document not found",
  152. }
  153. )
  154. @cloud_edition_billing_resource_check("vector_space", "dataset")
  155. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  156. def post(self, tenant_id, dataset_id, document_id):
  157. """Update document by text."""
  158. args = document_text_update_parser.parse_args()
  159. dataset_id = str(dataset_id)
  160. tenant_id = str(tenant_id)
  161. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  162. if not dataset:
  163. raise ValueError("Dataset does not exist.")
  164. if (
  165. args.get("retrieval_model")
  166. and args.get("retrieval_model").get("reranking_model")
  167. and args.get("retrieval_model").get("reranking_model").get("reranking_provider_name")
  168. ):
  169. DatasetService.check_reranking_model_setting(
  170. tenant_id,
  171. args.get("retrieval_model").get("reranking_model").get("reranking_provider_name"),
  172. args.get("retrieval_model").get("reranking_model").get("reranking_model_name"),
  173. )
  174. # indexing_technique is already set in dataset since this is an update
  175. args["indexing_technique"] = dataset.indexing_technique
  176. if args["text"]:
  177. text = args.get("text")
  178. name = args.get("name")
  179. if text is None or name is None:
  180. raise ValueError("Both text and name must be strings.")
  181. upload_file = FileService(db.engine).upload_text(text=str(text), text_name=str(name))
  182. data_source = {
  183. "type": "upload_file",
  184. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  185. }
  186. args["data_source"] = data_source
  187. # validate args
  188. args["original_document_id"] = str(document_id)
  189. knowledge_config = KnowledgeConfig(**args)
  190. DocumentService.document_create_args_validate(knowledge_config)
  191. try:
  192. documents, batch = DocumentService.save_document_with_dataset_id(
  193. dataset=dataset,
  194. knowledge_config=knowledge_config,
  195. account=current_user,
  196. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  197. created_from="api",
  198. )
  199. except ProviderTokenNotInitError as ex:
  200. raise ProviderNotInitializeError(ex.description)
  201. document = documents[0]
  202. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  203. return documents_and_batch_fields, 200
  204. @service_api_ns.route(
  205. "/datasets/<uuid:dataset_id>/document/create_by_file",
  206. "/datasets/<uuid:dataset_id>/document/create-by-file",
  207. )
  208. class DocumentAddByFileApi(DatasetApiResource):
  209. """Resource for documents."""
  210. @service_api_ns.doc("create_document_by_file")
  211. @service_api_ns.doc(description="Create a new document by uploading a file")
  212. @service_api_ns.doc(params={"dataset_id": "Dataset ID"})
  213. @service_api_ns.doc(
  214. responses={
  215. 200: "Document created successfully",
  216. 401: "Unauthorized - invalid API token",
  217. 400: "Bad request - invalid file or parameters",
  218. }
  219. )
  220. @cloud_edition_billing_resource_check("vector_space", "dataset")
  221. @cloud_edition_billing_resource_check("documents", "dataset")
  222. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  223. def post(self, tenant_id, dataset_id):
  224. """Create document by upload file."""
  225. args = {}
  226. if "data" in request.form:
  227. args = json.loads(request.form["data"])
  228. if "doc_form" not in args:
  229. args["doc_form"] = "text_model"
  230. if "doc_language" not in args:
  231. args["doc_language"] = "English"
  232. # get dataset info
  233. dataset_id = str(dataset_id)
  234. tenant_id = str(tenant_id)
  235. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  236. if not dataset:
  237. raise ValueError("Dataset does not exist.")
  238. if dataset.provider == "external":
  239. raise ValueError("External datasets are not supported.")
  240. indexing_technique = args.get("indexing_technique") or dataset.indexing_technique
  241. if not indexing_technique:
  242. raise ValueError("indexing_technique is required.")
  243. args["indexing_technique"] = indexing_technique
  244. if "embedding_model_provider" in args:
  245. DatasetService.check_embedding_model_setting(
  246. tenant_id, args["embedding_model_provider"], args["embedding_model"]
  247. )
  248. if (
  249. "retrieval_model" in args
  250. and args["retrieval_model"].get("reranking_model")
  251. and args["retrieval_model"].get("reranking_model").get("reranking_provider_name")
  252. ):
  253. DatasetService.check_reranking_model_setting(
  254. tenant_id,
  255. args["retrieval_model"].get("reranking_model").get("reranking_provider_name"),
  256. args["retrieval_model"].get("reranking_model").get("reranking_model_name"),
  257. )
  258. # check file
  259. if "file" not in request.files:
  260. raise NoFileUploadedError()
  261. if len(request.files) > 1:
  262. raise TooManyFilesError()
  263. # save file info
  264. file = request.files["file"]
  265. if not file.filename:
  266. raise FilenameNotExistsError
  267. upload_file = FileService(db.engine).upload_file(
  268. filename=file.filename,
  269. content=file.read(),
  270. mimetype=file.mimetype,
  271. user=current_user,
  272. source="datasets",
  273. )
  274. data_source = {
  275. "type": "upload_file",
  276. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  277. }
  278. args["data_source"] = data_source
  279. # validate args
  280. knowledge_config = KnowledgeConfig(**args)
  281. DocumentService.document_create_args_validate(knowledge_config)
  282. dataset_process_rule = dataset.latest_process_rule if "process_rule" not in args else None
  283. if not knowledge_config.original_document_id and not dataset_process_rule and not knowledge_config.process_rule:
  284. raise ValueError("process_rule is required.")
  285. try:
  286. documents, batch = DocumentService.save_document_with_dataset_id(
  287. dataset=dataset,
  288. knowledge_config=knowledge_config,
  289. account=dataset.created_by_account,
  290. dataset_process_rule=dataset_process_rule,
  291. created_from="api",
  292. )
  293. except ProviderTokenNotInitError as ex:
  294. raise ProviderNotInitializeError(ex.description)
  295. document = documents[0]
  296. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  297. return documents_and_batch_fields, 200
  298. @service_api_ns.route(
  299. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
  300. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
  301. )
  302. class DocumentUpdateByFileApi(DatasetApiResource):
  303. """Resource for update documents."""
  304. @service_api_ns.doc("update_document_by_file")
  305. @service_api_ns.doc(description="Update an existing document by uploading a file")
  306. @service_api_ns.doc(params={"dataset_id": "Dataset ID", "document_id": "Document ID"})
  307. @service_api_ns.doc(
  308. responses={
  309. 200: "Document updated successfully",
  310. 401: "Unauthorized - invalid API token",
  311. 404: "Document not found",
  312. }
  313. )
  314. @cloud_edition_billing_resource_check("vector_space", "dataset")
  315. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  316. def post(self, tenant_id, dataset_id, document_id):
  317. """Update document by upload file."""
  318. args = {}
  319. if "data" in request.form:
  320. args = json.loads(request.form["data"])
  321. if "doc_form" not in args:
  322. args["doc_form"] = "text_model"
  323. if "doc_language" not in args:
  324. args["doc_language"] = "English"
  325. # get dataset info
  326. dataset_id = str(dataset_id)
  327. tenant_id = str(tenant_id)
  328. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  329. if not dataset:
  330. raise ValueError("Dataset does not exist.")
  331. if dataset.provider == "external":
  332. raise ValueError("External datasets are not supported.")
  333. # indexing_technique is already set in dataset since this is an update
  334. args["indexing_technique"] = dataset.indexing_technique
  335. if "file" in request.files:
  336. # save file info
  337. file = request.files["file"]
  338. if len(request.files) > 1:
  339. raise TooManyFilesError()
  340. if not file.filename:
  341. raise FilenameNotExistsError
  342. try:
  343. upload_file = FileService(db.engine).upload_file(
  344. filename=file.filename,
  345. content=file.read(),
  346. mimetype=file.mimetype,
  347. user=current_user,
  348. source="datasets",
  349. )
  350. except services.errors.file.FileTooLargeError as file_too_large_error:
  351. raise FileTooLargeError(file_too_large_error.description)
  352. except services.errors.file.UnsupportedFileTypeError:
  353. raise UnsupportedFileTypeError()
  354. data_source = {
  355. "type": "upload_file",
  356. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  357. }
  358. args["data_source"] = data_source
  359. # validate args
  360. args["original_document_id"] = str(document_id)
  361. knowledge_config = KnowledgeConfig(**args)
  362. DocumentService.document_create_args_validate(knowledge_config)
  363. try:
  364. documents, batch = DocumentService.save_document_with_dataset_id(
  365. dataset=dataset,
  366. knowledge_config=knowledge_config,
  367. account=dataset.created_by_account,
  368. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  369. created_from="api",
  370. )
  371. except ProviderTokenNotInitError as ex:
  372. raise ProviderNotInitializeError(ex.description)
  373. document = documents[0]
  374. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
  375. return documents_and_batch_fields, 200
  376. @service_api_ns.route("/datasets/<uuid:dataset_id>/documents")
  377. class DocumentListApi(DatasetApiResource):
  378. @service_api_ns.doc("list_documents")
  379. @service_api_ns.doc(description="List all documents in a dataset")
  380. @service_api_ns.doc(params={"dataset_id": "Dataset ID"})
  381. @service_api_ns.doc(
  382. responses={
  383. 200: "Documents retrieved successfully",
  384. 401: "Unauthorized - invalid API token",
  385. 404: "Dataset not found",
  386. }
  387. )
  388. def get(self, tenant_id, dataset_id):
  389. dataset_id = str(dataset_id)
  390. tenant_id = str(tenant_id)
  391. page = request.args.get("page", default=1, type=int)
  392. limit = request.args.get("limit", default=20, type=int)
  393. search = request.args.get("keyword", default=None, type=str)
  394. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  395. if not dataset:
  396. raise NotFound("Dataset not found.")
  397. query = select(Document).filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
  398. if search:
  399. search = f"%{search}%"
  400. query = query.where(Document.name.like(search))
  401. query = query.order_by(desc(Document.created_at), desc(Document.position))
  402. paginated_documents = db.paginate(select=query, page=page, per_page=limit, max_per_page=100, error_out=False)
  403. documents = paginated_documents.items
  404. response = {
  405. "data": marshal(documents, document_fields),
  406. "has_more": len(documents) == limit,
  407. "limit": limit,
  408. "total": paginated_documents.total,
  409. "page": page,
  410. }
  411. return response
  412. @service_api_ns.route("/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")
  413. class DocumentIndexingStatusApi(DatasetApiResource):
  414. @service_api_ns.doc("get_document_indexing_status")
  415. @service_api_ns.doc(description="Get indexing status for documents in a batch")
  416. @service_api_ns.doc(params={"dataset_id": "Dataset ID", "batch": "Batch ID"})
  417. @service_api_ns.doc(
  418. responses={
  419. 200: "Indexing status retrieved successfully",
  420. 401: "Unauthorized - invalid API token",
  421. 404: "Dataset or documents not found",
  422. }
  423. )
  424. def get(self, tenant_id, dataset_id, batch):
  425. dataset_id = str(dataset_id)
  426. batch = str(batch)
  427. tenant_id = str(tenant_id)
  428. # get dataset
  429. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  430. if not dataset:
  431. raise NotFound("Dataset not found.")
  432. # get documents
  433. documents = DocumentService.get_batch_documents(dataset_id, batch)
  434. if not documents:
  435. raise NotFound("Documents not found.")
  436. documents_status = []
  437. for document in documents:
  438. completed_segments = (
  439. db.session.query(DocumentSegment)
  440. .where(
  441. DocumentSegment.completed_at.isnot(None),
  442. DocumentSegment.document_id == str(document.id),
  443. DocumentSegment.status != "re_segment",
  444. )
  445. .count()
  446. )
  447. total_segments = (
  448. db.session.query(DocumentSegment)
  449. .where(DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment")
  450. .count()
  451. )
  452. # Create a dictionary with document attributes and additional fields
  453. document_dict = {
  454. "id": document.id,
  455. "indexing_status": "paused" if document.is_paused else document.indexing_status,
  456. "processing_started_at": document.processing_started_at,
  457. "parsing_completed_at": document.parsing_completed_at,
  458. "cleaning_completed_at": document.cleaning_completed_at,
  459. "splitting_completed_at": document.splitting_completed_at,
  460. "completed_at": document.completed_at,
  461. "paused_at": document.paused_at,
  462. "error": document.error,
  463. "stopped_at": document.stopped_at,
  464. "completed_segments": completed_segments,
  465. "total_segments": total_segments,
  466. }
  467. documents_status.append(marshal(document_dict, document_status_fields))
  468. data = {"data": documents_status}
  469. return data
  470. @service_api_ns.route("/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
  471. class DocumentApi(DatasetApiResource):
  472. METADATA_CHOICES = {"all", "only", "without"}
  473. @service_api_ns.doc("get_document")
  474. @service_api_ns.doc(description="Get a specific document by ID")
  475. @service_api_ns.doc(params={"dataset_id": "Dataset ID", "document_id": "Document ID"})
  476. @service_api_ns.doc(
  477. responses={
  478. 200: "Document retrieved successfully",
  479. 401: "Unauthorized - invalid API token",
  480. 403: "Forbidden - insufficient permissions",
  481. 404: "Document not found",
  482. }
  483. )
  484. def get(self, tenant_id, dataset_id, document_id):
  485. dataset_id = str(dataset_id)
  486. document_id = str(document_id)
  487. dataset = self.get_dataset(dataset_id, tenant_id)
  488. document = DocumentService.get_document(dataset.id, document_id)
  489. if not document:
  490. raise NotFound("Document not found.")
  491. if document.tenant_id != str(tenant_id):
  492. raise Forbidden("No permission.")
  493. metadata = request.args.get("metadata", "all")
  494. if metadata not in self.METADATA_CHOICES:
  495. raise InvalidMetadataError(f"Invalid metadata value: {metadata}")
  496. if metadata == "only":
  497. response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata_details}
  498. elif metadata == "without":
  499. dataset_process_rules = DatasetService.get_process_rules(dataset_id)
  500. document_process_rules = document.dataset_process_rule.to_dict()
  501. data_source_info = document.data_source_detail_dict
  502. response = {
  503. "id": document.id,
  504. "position": document.position,
  505. "data_source_type": document.data_source_type,
  506. "data_source_info": data_source_info,
  507. "dataset_process_rule_id": document.dataset_process_rule_id,
  508. "dataset_process_rule": dataset_process_rules,
  509. "document_process_rule": document_process_rules,
  510. "name": document.name,
  511. "created_from": document.created_from,
  512. "created_by": document.created_by,
  513. "created_at": document.created_at.timestamp(),
  514. "tokens": document.tokens,
  515. "indexing_status": document.indexing_status,
  516. "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
  517. "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
  518. "indexing_latency": document.indexing_latency,
  519. "error": document.error,
  520. "enabled": document.enabled,
  521. "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
  522. "disabled_by": document.disabled_by,
  523. "archived": document.archived,
  524. "segment_count": document.segment_count,
  525. "average_segment_length": document.average_segment_length,
  526. "hit_count": document.hit_count,
  527. "display_status": document.display_status,
  528. "doc_form": document.doc_form,
  529. "doc_language": document.doc_language,
  530. }
  531. else:
  532. dataset_process_rules = DatasetService.get_process_rules(dataset_id)
  533. document_process_rules = document.dataset_process_rule.to_dict()
  534. data_source_info = document.data_source_detail_dict
  535. response = {
  536. "id": document.id,
  537. "position": document.position,
  538. "data_source_type": document.data_source_type,
  539. "data_source_info": data_source_info,
  540. "dataset_process_rule_id": document.dataset_process_rule_id,
  541. "dataset_process_rule": dataset_process_rules,
  542. "document_process_rule": document_process_rules,
  543. "name": document.name,
  544. "created_from": document.created_from,
  545. "created_by": document.created_by,
  546. "created_at": document.created_at.timestamp(),
  547. "tokens": document.tokens,
  548. "indexing_status": document.indexing_status,
  549. "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
  550. "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
  551. "indexing_latency": document.indexing_latency,
  552. "error": document.error,
  553. "enabled": document.enabled,
  554. "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
  555. "disabled_by": document.disabled_by,
  556. "archived": document.archived,
  557. "doc_type": document.doc_type,
  558. "doc_metadata": document.doc_metadata_details,
  559. "segment_count": document.segment_count,
  560. "average_segment_length": document.average_segment_length,
  561. "hit_count": document.hit_count,
  562. "display_status": document.display_status,
  563. "doc_form": document.doc_form,
  564. "doc_language": document.doc_language,
  565. }
  566. return response
  567. @service_api_ns.doc("delete_document")
  568. @service_api_ns.doc(description="Delete a document")
  569. @service_api_ns.doc(params={"dataset_id": "Dataset ID", "document_id": "Document ID"})
  570. @service_api_ns.doc(
  571. responses={
  572. 204: "Document deleted successfully",
  573. 401: "Unauthorized - invalid API token",
  574. 403: "Forbidden - document is archived",
  575. 404: "Document not found",
  576. }
  577. )
  578. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  579. def delete(self, tenant_id, dataset_id, document_id):
  580. """Delete document."""
  581. document_id = str(document_id)
  582. dataset_id = str(dataset_id)
  583. tenant_id = str(tenant_id)
  584. # get dataset info
  585. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  586. if not dataset:
  587. raise ValueError("Dataset does not exist.")
  588. document = DocumentService.get_document(dataset.id, document_id)
  589. # 404 if document not found
  590. if document is None:
  591. raise NotFound("Document Not Exists.")
  592. # 403 if document is archived
  593. if DocumentService.check_archived(document):
  594. raise ArchivedDocumentImmutableError()
  595. try:
  596. # delete document
  597. DocumentService.delete_document(document)
  598. except services.errors.document.DocumentIndexingError:
  599. raise DocumentIndexingError("Cannot delete document during indexing.")
  600. return 204