Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.
Rain Wang e8d98e3d89
Add analyzer_params config for milvus vectordb (#18180)
vor 6 Monaten
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) vor 1 Jahr
.vscode feat/enhance the multi-modal support (#8818) vor 1 Jahr
configs Add analyzer_params config for milvus vectordb (#18180) vor 6 Monaten
constants fix: fix file number limit error (#17848) vor 6 Monaten
contexts feat: Add caching mechanism for plugin model schemas (#14898) vor 8 Monaten
controllers feat: fetch app info in plugins (#18202) vor 6 Monaten
core Add analyzer_params config for milvus vectordb (#18180) vor 6 Monaten
docker Set default LOG_LEVEL to INFO for celery workers and beat (#13066) vor 9 Monaten
events Remove dead code (#17899) vor 6 Monaten
extensions [Observability] Instrument with celery (#18029) vor 6 Monaten
factories fix: implement robust file type checks to align with existing logic (#17557) vor 6 Monaten
fields fix: cannot regenerate with image(#15060) (#16611) vor 6 Monaten
libs Update login.py (#15320) vor 7 Monaten
migrations Fix Performance Issues: (#17083) vor 6 Monaten
models fix: cannot regenerate with image(#15060) (#16611) vor 6 Monaten
schedule Fix function's name mismatch (#16681) vor 7 Monaten
services fix: create child chunk (#18209) vor 6 Monaten
tasks chore: skip document segments fetching with non-existed dataset of DatasetDocument in add_document_to_index_task task (#17784) vor 6 Monaten
templates feat: account delete (#11829) vor 10 Monaten
tests fix(fail-branch): prevent streaming output in exception branches (#17153) vor 6 Monaten
.dockerignore Introduce Plugins (#13836) vor 8 Monaten
.env.example Add analyzer_params config for milvus vectordb (#18180) vor 6 Monaten
.ruff.toml chore(api): enhance ruff rules to disallow dangerous functions and modules (#16461) vor 7 Monaten
Dockerfile build: introduce uv as Python package manager (#16317) vor 6 Monaten
README.md chore: merge lint dependency group into dev group of python packages (#18088) vor 6 Monaten
app.py fix(app.py): if condition (#12314) vor 10 Monaten
app_factory.py [Observability] Integrate OpenTelemetry (#17627) vor 6 Monaten
commands.py feat: support Tablestore vector database (#16601) vor 7 Monaten
dify_app.py refactor: assembling the app features in modular way (#9129) vor 11 Monaten
mypy.ini Remove the useless excluded item in mypy.ini (#16777) vor 7 Monaten
pyproject.toml [Unit Test] Generate coverage number for UT (#18106) vor 6 Monaten
pytest.ini [Unit Test] Generate coverage number for UT (#18106) vor 6 Monaten
uv.lock [Unit Test] Generate coverage number for UT (#18106) vor 6 Monaten

README.md

Dify Backend API

Usage

[!IMPORTANT]

In the v1.3.0 release, poetry has been replaced with uv as the package manager for Dify API backend service.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
   cp .env.example .env 
  1. Generate a SECRET_KEY in the .env file.

bash for Linux

   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env

bash for Mac

   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses UV to manage dependencies. First, you need to add the uv package manager, if you don’t have it already.

   pip install uv
   # Or on macOS
   brew install uv
  1. Install dependencies
   uv sync --dev
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   uv run flask db upgrade
  1. Start backend
   uv run flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000.
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   uv run celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   uv sync --dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   uv run -P api bash dev/pytest/pytest_all_tests.sh