Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
-LAN- e61752bd3a
feat/enhance the multi-modal support (#8818)
pirms 1 gada
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) pirms 1 gada
.vscode feat/enhance the multi-modal support (#8818) pirms 1 gada
configs feat/enhance the multi-modal support (#8818) pirms 1 gada
constants feat/enhance the multi-modal support (#8818) pirms 1 gada
contexts feat/enhance the multi-modal support (#8818) pirms 1 gada
controllers feat/enhance the multi-modal support (#8818) pirms 1 gada
core feat/enhance the multi-modal support (#8818) pirms 1 gada
docker fix: use LOG_LEVEL for celery startup (#7628) pirms 1 gada
events feat/enhance the multi-modal support (#8818) pirms 1 gada
extensions feat/enhance the multi-modal support (#8818) pirms 1 gada
factories feat/enhance the multi-modal support (#8818) pirms 1 gada
fields feat/enhance the multi-modal support (#8818) pirms 1 gada
libs feat/enhance the multi-modal support (#8818) pirms 1 gada
migrations feat/enhance the multi-modal support (#8818) pirms 1 gada
models feat/enhance the multi-modal support (#8818) pirms 1 gada
schedule update dataset clean rule (#9426) pirms 1 gada
services feat/enhance the multi-modal support (#8818) pirms 1 gada
tasks Feat/new login (#8120) pirms 1 gada
templates Feat/new login (#8120) pirms 1 gada
tests feat/enhance the multi-modal support (#8818) pirms 1 gada
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) pirms 1 gada
.env.example feat/enhance the multi-modal support (#8818) pirms 1 gada
Dockerfile fix: Version '2.6.2-2' for 'expat' was not found (#8182) pirms 1 gada
README.md fix: poetry installation in CI jobs (#9336) pirms 1 gada
app.py fix: resolve the error with the db-pool-stat endpoint (#9478) pirms 1 gada
app_factory.py controller test (#9469) pirms 1 gada
commands.py feat/enhance the multi-modal support (#8818) pirms 1 gada
poetry.lock feat/enhance the multi-modal support (#8818) pirms 1 gada
poetry.toml build: initial support for poetry build tool (#4513) pirms 1 gada
pyproject.toml feat/enhance the multi-modal support (#8818) pirms 1 gada
pytest.ini chore: move testing env variables from pyproject.toml to pytest.ini (#9019) pirms 1 gada

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh