| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 | 
							- from typing import Optional
 - 
 - from core.model_runtime.entities.llm_entities import LLMResult
 - from core.model_runtime.entities.message_entities import PromptMessage, SystemPromptMessage, UserPromptMessage
 - from core.tools.entities.tool_entities import ToolProviderType
 - from core.tools.tool.tool import Tool
 - from core.tools.utils.model_invocation_utils import ModelInvocationUtils
 - from core.tools.utils.web_reader_tool import get_url
 - 
 - _SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
 - and you can quickly aimed at the main point of an webpage and reproduce it in your own words but 
 - retain the original meaning and keep the key points. 
 - however, the text you got is too long, what you got is possible a part of the text.
 - Please summarize the text you got.
 - """
 - 
 - 
 - class BuiltinTool(Tool):
 -     """
 -     Builtin tool
 - 
 -     :param meta: the meta data of a tool call processing
 -     """
 - 
 -     def invoke_model(self, user_id: str, prompt_messages: list[PromptMessage], stop: list[str]) -> LLMResult:
 -         """
 -         invoke model
 - 
 -         :param model_config: the model config
 -         :param prompt_messages: the prompt messages
 -         :param stop: the stop words
 -         :return: the model result
 -         """
 -         # invoke model
 -         return ModelInvocationUtils.invoke(
 -             user_id=user_id,
 -             tenant_id=self.runtime.tenant_id,
 -             tool_type="builtin",
 -             tool_name=self.identity.name,
 -             prompt_messages=prompt_messages,
 -         )
 - 
 -     def tool_provider_type(self) -> ToolProviderType:
 -         return ToolProviderType.BUILT_IN
 - 
 -     def get_max_tokens(self) -> int:
 -         """
 -         get max tokens
 - 
 -         :param model_config: the model config
 -         :return: the max tokens
 -         """
 -         return ModelInvocationUtils.get_max_llm_context_tokens(
 -             tenant_id=self.runtime.tenant_id,
 -         )
 - 
 -     def get_prompt_tokens(self, prompt_messages: list[PromptMessage]) -> int:
 -         """
 -         get prompt tokens
 - 
 -         :param prompt_messages: the prompt messages
 -         :return: the tokens
 -         """
 -         return ModelInvocationUtils.calculate_tokens(tenant_id=self.runtime.tenant_id, prompt_messages=prompt_messages)
 - 
 -     def summary(self, user_id: str, content: str) -> str:
 -         max_tokens = self.get_max_tokens()
 - 
 -         if self.get_prompt_tokens(prompt_messages=[UserPromptMessage(content=content)]) < max_tokens * 0.6:
 -             return content
 - 
 -         def get_prompt_tokens(content: str) -> int:
 -             return self.get_prompt_tokens(
 -                 prompt_messages=[SystemPromptMessage(content=_SUMMARY_PROMPT), UserPromptMessage(content=content)]
 -             )
 - 
 -         def summarize(content: str) -> str:
 -             summary = self.invoke_model(
 -                 user_id=user_id,
 -                 prompt_messages=[SystemPromptMessage(content=_SUMMARY_PROMPT), UserPromptMessage(content=content)],
 -                 stop=[],
 -             )
 - 
 -             return summary.message.content
 - 
 -         lines = content.split("\n")
 -         new_lines = []
 -         # split long line into multiple lines
 -         for i in range(len(lines)):
 -             line = lines[i]
 -             if not line.strip():
 -                 continue
 -             if len(line) < max_tokens * 0.5:
 -                 new_lines.append(line)
 -             elif get_prompt_tokens(line) > max_tokens * 0.7:
 -                 while get_prompt_tokens(line) > max_tokens * 0.7:
 -                     new_lines.append(line[: int(max_tokens * 0.5)])
 -                     line = line[int(max_tokens * 0.5) :]
 -                 new_lines.append(line)
 -             else:
 -                 new_lines.append(line)
 - 
 -         # merge lines into messages with max tokens
 -         messages: list[str] = []
 -         for i in new_lines:
 -             if len(messages) == 0:
 -                 messages.append(i)
 -             else:
 -                 if len(messages[-1]) + len(i) < max_tokens * 0.5:
 -                     messages[-1] += i
 -                 if get_prompt_tokens(messages[-1] + i) > max_tokens * 0.7:
 -                     messages.append(i)
 -                 else:
 -                     messages[-1] += i
 - 
 -         summaries = []
 -         for i in range(len(messages)):
 -             message = messages[i]
 -             summary = summarize(message)
 -             summaries.append(summary)
 - 
 -         result = "\n".join(summaries)
 - 
 -         if self.get_prompt_tokens(prompt_messages=[UserPromptMessage(content=result)]) > max_tokens * 0.7:
 -             return self.summary(user_id=user_id, content=result)
 - 
 -         return result
 - 
 -     def get_url(self, url: str, user_agent: Optional[str] = None) -> str:
 -         """
 -         get url
 -         """
 -         return get_url(url, user_agent=user_agent)
 
 
  |