您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

datasets.py 31KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809
  1. import flask_restful
  2. from flask import request
  3. from flask_login import current_user
  4. from flask_restful import Resource, marshal, marshal_with, reqparse
  5. from werkzeug.exceptions import Forbidden, NotFound
  6. import services
  7. from configs import dify_config
  8. from controllers.console import api
  9. from controllers.console.apikey import api_key_fields, api_key_list
  10. from controllers.console.app.error import ProviderNotInitializeError
  11. from controllers.console.datasets.error import DatasetInUseError, DatasetNameDuplicateError, IndexingEstimateError
  12. from controllers.console.wraps import (
  13. account_initialization_required,
  14. cloud_edition_billing_rate_limit_check,
  15. enterprise_license_required,
  16. setup_required,
  17. )
  18. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  19. from core.indexing_runner import IndexingRunner
  20. from core.model_runtime.entities.model_entities import ModelType
  21. from core.plugin.entities.plugin import ModelProviderID
  22. from core.provider_manager import ProviderManager
  23. from core.rag.datasource.vdb.vector_type import VectorType
  24. from core.rag.extractor.entity.extract_setting import ExtractSetting
  25. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  26. from extensions.ext_database import db
  27. from fields.app_fields import related_app_list
  28. from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
  29. from fields.document_fields import document_status_fields
  30. from libs.login import login_required
  31. from models import ApiToken, Dataset, Document, DocumentSegment, UploadFile
  32. from models.dataset import DatasetPermissionEnum
  33. from services.dataset_service import DatasetPermissionService, DatasetService, DocumentService
  34. def _validate_name(name):
  35. if not name or len(name) < 1 or len(name) > 40:
  36. raise ValueError("Name must be between 1 to 40 characters.")
  37. return name
  38. def _validate_description_length(description):
  39. if len(description) > 400:
  40. raise ValueError("Description cannot exceed 400 characters.")
  41. return description
  42. class DatasetListApi(Resource):
  43. @setup_required
  44. @login_required
  45. @account_initialization_required
  46. @enterprise_license_required
  47. def get(self):
  48. page = request.args.get("page", default=1, type=int)
  49. limit = request.args.get("limit", default=20, type=int)
  50. ids = request.args.getlist("ids")
  51. # provider = request.args.get("provider", default="vendor")
  52. search = request.args.get("keyword", default=None, type=str)
  53. tag_ids = request.args.getlist("tag_ids")
  54. include_all = request.args.get("include_all", default="false").lower() == "true"
  55. if ids:
  56. datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
  57. else:
  58. datasets, total = DatasetService.get_datasets(
  59. page, limit, current_user.current_tenant_id, current_user, search, tag_ids, include_all
  60. )
  61. # check embedding setting
  62. provider_manager = ProviderManager()
  63. configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
  64. embedding_models = configurations.get_models(model_type=ModelType.TEXT_EMBEDDING, only_active=True)
  65. model_names = []
  66. for embedding_model in embedding_models:
  67. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  68. data = marshal(datasets, dataset_detail_fields)
  69. for item in data:
  70. # convert embedding_model_provider to plugin standard format
  71. if item["indexing_technique"] == "high_quality" and item["embedding_model_provider"]:
  72. item["embedding_model_provider"] = str(ModelProviderID(item["embedding_model_provider"]))
  73. item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
  74. if item_model in model_names:
  75. item["embedding_available"] = True
  76. else:
  77. item["embedding_available"] = False
  78. else:
  79. item["embedding_available"] = True
  80. if item.get("permission") == "partial_members":
  81. part_users_list = DatasetPermissionService.get_dataset_partial_member_list(item["id"])
  82. item.update({"partial_member_list": part_users_list})
  83. else:
  84. item.update({"partial_member_list": []})
  85. response = {"data": data, "has_more": len(datasets) == limit, "limit": limit, "total": total, "page": page}
  86. return response, 200
  87. @setup_required
  88. @login_required
  89. @account_initialization_required
  90. @cloud_edition_billing_rate_limit_check("knowledge")
  91. def post(self):
  92. parser = reqparse.RequestParser()
  93. parser.add_argument(
  94. "name",
  95. nullable=False,
  96. required=True,
  97. help="type is required. Name must be between 1 to 40 characters.",
  98. type=_validate_name,
  99. )
  100. parser.add_argument(
  101. "description",
  102. type=str,
  103. nullable=True,
  104. required=False,
  105. default="",
  106. )
  107. parser.add_argument(
  108. "indexing_technique",
  109. type=str,
  110. location="json",
  111. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  112. nullable=True,
  113. help="Invalid indexing technique.",
  114. )
  115. parser.add_argument(
  116. "external_knowledge_api_id",
  117. type=str,
  118. nullable=True,
  119. required=False,
  120. )
  121. parser.add_argument(
  122. "provider",
  123. type=str,
  124. nullable=True,
  125. choices=Dataset.PROVIDER_LIST,
  126. required=False,
  127. default="vendor",
  128. )
  129. parser.add_argument(
  130. "external_knowledge_id",
  131. type=str,
  132. nullable=True,
  133. required=False,
  134. )
  135. args = parser.parse_args()
  136. # The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
  137. if not current_user.is_dataset_editor:
  138. raise Forbidden()
  139. try:
  140. dataset = DatasetService.create_empty_dataset(
  141. tenant_id=current_user.current_tenant_id,
  142. name=args["name"],
  143. description=args["description"],
  144. indexing_technique=args["indexing_technique"],
  145. account=current_user,
  146. permission=DatasetPermissionEnum.ONLY_ME,
  147. provider=args["provider"],
  148. external_knowledge_api_id=args["external_knowledge_api_id"],
  149. external_knowledge_id=args["external_knowledge_id"],
  150. )
  151. except services.errors.dataset.DatasetNameDuplicateError:
  152. raise DatasetNameDuplicateError()
  153. return marshal(dataset, dataset_detail_fields), 201
  154. class DatasetApi(Resource):
  155. @setup_required
  156. @login_required
  157. @account_initialization_required
  158. def get(self, dataset_id):
  159. dataset_id_str = str(dataset_id)
  160. dataset = DatasetService.get_dataset(dataset_id_str)
  161. if dataset is None:
  162. raise NotFound("Dataset not found.")
  163. try:
  164. DatasetService.check_dataset_permission(dataset, current_user)
  165. except services.errors.account.NoPermissionError as e:
  166. raise Forbidden(str(e))
  167. data = marshal(dataset, dataset_detail_fields)
  168. if dataset.indexing_technique == "high_quality":
  169. if dataset.embedding_model_provider:
  170. provider_id = ModelProviderID(dataset.embedding_model_provider)
  171. data["embedding_model_provider"] = str(provider_id)
  172. if data.get("permission") == "partial_members":
  173. part_users_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
  174. data.update({"partial_member_list": part_users_list})
  175. # check embedding setting
  176. provider_manager = ProviderManager()
  177. configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
  178. embedding_models = configurations.get_models(model_type=ModelType.TEXT_EMBEDDING, only_active=True)
  179. model_names = []
  180. for embedding_model in embedding_models:
  181. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  182. if data["indexing_technique"] == "high_quality":
  183. item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
  184. if item_model in model_names:
  185. data["embedding_available"] = True
  186. else:
  187. data["embedding_available"] = False
  188. else:
  189. data["embedding_available"] = True
  190. return data, 200
  191. @setup_required
  192. @login_required
  193. @account_initialization_required
  194. @cloud_edition_billing_rate_limit_check("knowledge")
  195. def patch(self, dataset_id):
  196. dataset_id_str = str(dataset_id)
  197. dataset = DatasetService.get_dataset(dataset_id_str)
  198. if dataset is None:
  199. raise NotFound("Dataset not found.")
  200. parser = reqparse.RequestParser()
  201. parser.add_argument(
  202. "name",
  203. nullable=False,
  204. help="type is required. Name must be between 1 to 40 characters.",
  205. type=_validate_name,
  206. )
  207. parser.add_argument("description", location="json", store_missing=False, type=_validate_description_length)
  208. parser.add_argument(
  209. "indexing_technique",
  210. type=str,
  211. location="json",
  212. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  213. nullable=True,
  214. help="Invalid indexing technique.",
  215. )
  216. parser.add_argument(
  217. "permission",
  218. type=str,
  219. location="json",
  220. choices=(DatasetPermissionEnum.ONLY_ME, DatasetPermissionEnum.ALL_TEAM, DatasetPermissionEnum.PARTIAL_TEAM),
  221. help="Invalid permission.",
  222. )
  223. parser.add_argument("embedding_model", type=str, location="json", help="Invalid embedding model.")
  224. parser.add_argument(
  225. "embedding_model_provider", type=str, location="json", help="Invalid embedding model provider."
  226. )
  227. parser.add_argument("retrieval_model", type=dict, location="json", help="Invalid retrieval model.")
  228. parser.add_argument("partial_member_list", type=list, location="json", help="Invalid parent user list.")
  229. parser.add_argument(
  230. "external_retrieval_model",
  231. type=dict,
  232. required=False,
  233. nullable=True,
  234. location="json",
  235. help="Invalid external retrieval model.",
  236. )
  237. parser.add_argument(
  238. "external_knowledge_id",
  239. type=str,
  240. required=False,
  241. nullable=True,
  242. location="json",
  243. help="Invalid external knowledge id.",
  244. )
  245. parser.add_argument(
  246. "external_knowledge_api_id",
  247. type=str,
  248. required=False,
  249. nullable=True,
  250. location="json",
  251. help="Invalid external knowledge api id.",
  252. )
  253. args = parser.parse_args()
  254. data = request.get_json()
  255. # check embedding model setting
  256. if (
  257. data.get("indexing_technique") == "high_quality"
  258. and data.get("embedding_model_provider") is not None
  259. and data.get("embedding_model") is not None
  260. ):
  261. DatasetService.check_embedding_model_setting(
  262. dataset.tenant_id, data.get("embedding_model_provider"), data.get("embedding_model")
  263. )
  264. # The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
  265. DatasetPermissionService.check_permission(
  266. current_user, dataset, data.get("permission"), data.get("partial_member_list")
  267. )
  268. dataset = DatasetService.update_dataset(dataset_id_str, args, current_user)
  269. if dataset is None:
  270. raise NotFound("Dataset not found.")
  271. result_data = marshal(dataset, dataset_detail_fields)
  272. tenant_id = current_user.current_tenant_id
  273. if data.get("partial_member_list") and data.get("permission") == "partial_members":
  274. DatasetPermissionService.update_partial_member_list(
  275. tenant_id, dataset_id_str, data.get("partial_member_list")
  276. )
  277. # clear partial member list when permission is only_me or all_team_members
  278. elif (
  279. data.get("permission") == DatasetPermissionEnum.ONLY_ME
  280. or data.get("permission") == DatasetPermissionEnum.ALL_TEAM
  281. ):
  282. DatasetPermissionService.clear_partial_member_list(dataset_id_str)
  283. partial_member_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
  284. result_data.update({"partial_member_list": partial_member_list})
  285. return result_data, 200
  286. @setup_required
  287. @login_required
  288. @account_initialization_required
  289. @cloud_edition_billing_rate_limit_check("knowledge")
  290. def delete(self, dataset_id):
  291. dataset_id_str = str(dataset_id)
  292. # The role of the current user in the ta table must be admin, owner, or editor
  293. if not current_user.is_editor or current_user.is_dataset_operator:
  294. raise Forbidden()
  295. try:
  296. if DatasetService.delete_dataset(dataset_id_str, current_user):
  297. DatasetPermissionService.clear_partial_member_list(dataset_id_str)
  298. return {"result": "success"}, 204
  299. else:
  300. raise NotFound("Dataset not found.")
  301. except services.errors.dataset.DatasetInUseError:
  302. raise DatasetInUseError()
  303. class DatasetUseCheckApi(Resource):
  304. @setup_required
  305. @login_required
  306. @account_initialization_required
  307. def get(self, dataset_id):
  308. dataset_id_str = str(dataset_id)
  309. dataset_is_using = DatasetService.dataset_use_check(dataset_id_str)
  310. return {"is_using": dataset_is_using}, 200
  311. class DatasetQueryApi(Resource):
  312. @setup_required
  313. @login_required
  314. @account_initialization_required
  315. def get(self, dataset_id):
  316. dataset_id_str = str(dataset_id)
  317. dataset = DatasetService.get_dataset(dataset_id_str)
  318. if dataset is None:
  319. raise NotFound("Dataset not found.")
  320. try:
  321. DatasetService.check_dataset_permission(dataset, current_user)
  322. except services.errors.account.NoPermissionError as e:
  323. raise Forbidden(str(e))
  324. page = request.args.get("page", default=1, type=int)
  325. limit = request.args.get("limit", default=20, type=int)
  326. dataset_queries, total = DatasetService.get_dataset_queries(dataset_id=dataset.id, page=page, per_page=limit)
  327. response = {
  328. "data": marshal(dataset_queries, dataset_query_detail_fields),
  329. "has_more": len(dataset_queries) == limit,
  330. "limit": limit,
  331. "total": total,
  332. "page": page,
  333. }
  334. return response, 200
  335. class DatasetIndexingEstimateApi(Resource):
  336. @setup_required
  337. @login_required
  338. @account_initialization_required
  339. def post(self):
  340. parser = reqparse.RequestParser()
  341. parser.add_argument("info_list", type=dict, required=True, nullable=True, location="json")
  342. parser.add_argument("process_rule", type=dict, required=True, nullable=True, location="json")
  343. parser.add_argument(
  344. "indexing_technique",
  345. type=str,
  346. required=True,
  347. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  348. nullable=True,
  349. location="json",
  350. )
  351. parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
  352. parser.add_argument("dataset_id", type=str, required=False, nullable=False, location="json")
  353. parser.add_argument(
  354. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  355. )
  356. args = parser.parse_args()
  357. # validate args
  358. DocumentService.estimate_args_validate(args)
  359. extract_settings = []
  360. if args["info_list"]["data_source_type"] == "upload_file":
  361. file_ids = args["info_list"]["file_info_list"]["file_ids"]
  362. file_details = (
  363. db.session.query(UploadFile)
  364. .where(UploadFile.tenant_id == current_user.current_tenant_id, UploadFile.id.in_(file_ids))
  365. .all()
  366. )
  367. if file_details is None:
  368. raise NotFound("File not found.")
  369. if file_details:
  370. for file_detail in file_details:
  371. extract_setting = ExtractSetting(
  372. datasource_type="upload_file", upload_file=file_detail, document_model=args["doc_form"]
  373. )
  374. extract_settings.append(extract_setting)
  375. elif args["info_list"]["data_source_type"] == "notion_import":
  376. notion_info_list = args["info_list"]["notion_info_list"]
  377. for notion_info in notion_info_list:
  378. workspace_id = notion_info["workspace_id"]
  379. for page in notion_info["pages"]:
  380. extract_setting = ExtractSetting(
  381. datasource_type="notion_import",
  382. notion_info={
  383. "notion_workspace_id": workspace_id,
  384. "notion_obj_id": page["page_id"],
  385. "notion_page_type": page["type"],
  386. "tenant_id": current_user.current_tenant_id,
  387. },
  388. document_model=args["doc_form"],
  389. )
  390. extract_settings.append(extract_setting)
  391. elif args["info_list"]["data_source_type"] == "website_crawl":
  392. website_info_list = args["info_list"]["website_info_list"]
  393. for url in website_info_list["urls"]:
  394. extract_setting = ExtractSetting(
  395. datasource_type="website_crawl",
  396. website_info={
  397. "provider": website_info_list["provider"],
  398. "job_id": website_info_list["job_id"],
  399. "url": url,
  400. "tenant_id": current_user.current_tenant_id,
  401. "mode": "crawl",
  402. "only_main_content": website_info_list["only_main_content"],
  403. },
  404. document_model=args["doc_form"],
  405. )
  406. extract_settings.append(extract_setting)
  407. else:
  408. raise ValueError("Data source type not support")
  409. indexing_runner = IndexingRunner()
  410. try:
  411. response = indexing_runner.indexing_estimate(
  412. current_user.current_tenant_id,
  413. extract_settings,
  414. args["process_rule"],
  415. args["doc_form"],
  416. args["doc_language"],
  417. args["dataset_id"],
  418. args["indexing_technique"],
  419. )
  420. except LLMBadRequestError:
  421. raise ProviderNotInitializeError(
  422. "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
  423. )
  424. except ProviderTokenNotInitError as ex:
  425. raise ProviderNotInitializeError(ex.description)
  426. except Exception as e:
  427. raise IndexingEstimateError(str(e))
  428. return response.model_dump(), 200
  429. class DatasetRelatedAppListApi(Resource):
  430. @setup_required
  431. @login_required
  432. @account_initialization_required
  433. @marshal_with(related_app_list)
  434. def get(self, dataset_id):
  435. dataset_id_str = str(dataset_id)
  436. dataset = DatasetService.get_dataset(dataset_id_str)
  437. if dataset is None:
  438. raise NotFound("Dataset not found.")
  439. try:
  440. DatasetService.check_dataset_permission(dataset, current_user)
  441. except services.errors.account.NoPermissionError as e:
  442. raise Forbidden(str(e))
  443. app_dataset_joins = DatasetService.get_related_apps(dataset.id)
  444. related_apps = []
  445. for app_dataset_join in app_dataset_joins:
  446. app_model = app_dataset_join.app
  447. if app_model:
  448. related_apps.append(app_model)
  449. return {"data": related_apps, "total": len(related_apps)}, 200
  450. class DatasetIndexingStatusApi(Resource):
  451. @setup_required
  452. @login_required
  453. @account_initialization_required
  454. def get(self, dataset_id):
  455. dataset_id = str(dataset_id)
  456. documents = (
  457. db.session.query(Document)
  458. .where(Document.dataset_id == dataset_id, Document.tenant_id == current_user.current_tenant_id)
  459. .all()
  460. )
  461. documents_status = []
  462. for document in documents:
  463. completed_segments = (
  464. db.session.query(DocumentSegment)
  465. .where(
  466. DocumentSegment.completed_at.isnot(None),
  467. DocumentSegment.document_id == str(document.id),
  468. DocumentSegment.status != "re_segment",
  469. )
  470. .count()
  471. )
  472. total_segments = (
  473. db.session.query(DocumentSegment)
  474. .where(DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment")
  475. .count()
  476. )
  477. # Create a dictionary with document attributes and additional fields
  478. document_dict = {
  479. "id": document.id,
  480. "indexing_status": document.indexing_status,
  481. "processing_started_at": document.processing_started_at,
  482. "parsing_completed_at": document.parsing_completed_at,
  483. "cleaning_completed_at": document.cleaning_completed_at,
  484. "splitting_completed_at": document.splitting_completed_at,
  485. "completed_at": document.completed_at,
  486. "paused_at": document.paused_at,
  487. "error": document.error,
  488. "stopped_at": document.stopped_at,
  489. "completed_segments": completed_segments,
  490. "total_segments": total_segments,
  491. }
  492. documents_status.append(marshal(document_dict, document_status_fields))
  493. data = {"data": documents_status}
  494. return data
  495. class DatasetApiKeyApi(Resource):
  496. max_keys = 10
  497. token_prefix = "dataset-"
  498. resource_type = "dataset"
  499. @setup_required
  500. @login_required
  501. @account_initialization_required
  502. @marshal_with(api_key_list)
  503. def get(self):
  504. keys = (
  505. db.session.query(ApiToken)
  506. .where(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id)
  507. .all()
  508. )
  509. return {"items": keys}
  510. @setup_required
  511. @login_required
  512. @account_initialization_required
  513. @marshal_with(api_key_fields)
  514. def post(self):
  515. # The role of the current user in the ta table must be admin or owner
  516. if not current_user.is_admin_or_owner:
  517. raise Forbidden()
  518. current_key_count = (
  519. db.session.query(ApiToken)
  520. .where(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id)
  521. .count()
  522. )
  523. if current_key_count >= self.max_keys:
  524. flask_restful.abort(
  525. 400,
  526. message=f"Cannot create more than {self.max_keys} API keys for this resource type.",
  527. code="max_keys_exceeded",
  528. )
  529. key = ApiToken.generate_api_key(self.token_prefix, 24)
  530. api_token = ApiToken()
  531. api_token.tenant_id = current_user.current_tenant_id
  532. api_token.token = key
  533. api_token.type = self.resource_type
  534. db.session.add(api_token)
  535. db.session.commit()
  536. return api_token, 200
  537. class DatasetApiDeleteApi(Resource):
  538. resource_type = "dataset"
  539. @setup_required
  540. @login_required
  541. @account_initialization_required
  542. def delete(self, api_key_id):
  543. api_key_id = str(api_key_id)
  544. # The role of the current user in the ta table must be admin or owner
  545. if not current_user.is_admin_or_owner:
  546. raise Forbidden()
  547. key = (
  548. db.session.query(ApiToken)
  549. .where(
  550. ApiToken.tenant_id == current_user.current_tenant_id,
  551. ApiToken.type == self.resource_type,
  552. ApiToken.id == api_key_id,
  553. )
  554. .first()
  555. )
  556. if key is None:
  557. flask_restful.abort(404, message="API key not found")
  558. db.session.query(ApiToken).where(ApiToken.id == api_key_id).delete()
  559. db.session.commit()
  560. return {"result": "success"}, 204
  561. class DatasetApiBaseUrlApi(Resource):
  562. @setup_required
  563. @login_required
  564. @account_initialization_required
  565. def get(self):
  566. return {"api_base_url": (dify_config.SERVICE_API_URL or request.host_url.rstrip("/")) + "/v1"}
  567. class DatasetRetrievalSettingApi(Resource):
  568. @setup_required
  569. @login_required
  570. @account_initialization_required
  571. def get(self):
  572. vector_type = dify_config.VECTOR_STORE
  573. match vector_type:
  574. case (
  575. VectorType.RELYT
  576. | VectorType.TIDB_VECTOR
  577. | VectorType.CHROMA
  578. | VectorType.PGVECTO_RS
  579. | VectorType.BAIDU
  580. | VectorType.VIKINGDB
  581. | VectorType.UPSTASH
  582. ):
  583. return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
  584. case (
  585. VectorType.QDRANT
  586. | VectorType.WEAVIATE
  587. | VectorType.OPENSEARCH
  588. | VectorType.ANALYTICDB
  589. | VectorType.MYSCALE
  590. | VectorType.ORACLE
  591. | VectorType.ELASTICSEARCH
  592. | VectorType.ELASTICSEARCH_JA
  593. | VectorType.PGVECTOR
  594. | VectorType.VASTBASE
  595. | VectorType.TIDB_ON_QDRANT
  596. | VectorType.LINDORM
  597. | VectorType.COUCHBASE
  598. | VectorType.MILVUS
  599. | VectorType.OPENGAUSS
  600. | VectorType.OCEANBASE
  601. | VectorType.TABLESTORE
  602. | VectorType.HUAWEI_CLOUD
  603. | VectorType.TENCENT
  604. | VectorType.MATRIXONE
  605. | VectorType.CLICKZETTA
  606. ):
  607. return {
  608. "retrieval_method": [
  609. RetrievalMethod.SEMANTIC_SEARCH.value,
  610. RetrievalMethod.FULL_TEXT_SEARCH.value,
  611. RetrievalMethod.HYBRID_SEARCH.value,
  612. ]
  613. }
  614. case _:
  615. raise ValueError(f"Unsupported vector db type {vector_type}.")
  616. class DatasetRetrievalSettingMockApi(Resource):
  617. @setup_required
  618. @login_required
  619. @account_initialization_required
  620. def get(self, vector_type):
  621. match vector_type:
  622. case (
  623. VectorType.MILVUS
  624. | VectorType.RELYT
  625. | VectorType.TIDB_VECTOR
  626. | VectorType.CHROMA
  627. | VectorType.PGVECTO_RS
  628. | VectorType.BAIDU
  629. | VectorType.VIKINGDB
  630. | VectorType.UPSTASH
  631. ):
  632. return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
  633. case (
  634. VectorType.QDRANT
  635. | VectorType.WEAVIATE
  636. | VectorType.OPENSEARCH
  637. | VectorType.ANALYTICDB
  638. | VectorType.MYSCALE
  639. | VectorType.ORACLE
  640. | VectorType.ELASTICSEARCH
  641. | VectorType.ELASTICSEARCH_JA
  642. | VectorType.COUCHBASE
  643. | VectorType.PGVECTOR
  644. | VectorType.VASTBASE
  645. | VectorType.LINDORM
  646. | VectorType.OPENGAUSS
  647. | VectorType.OCEANBASE
  648. | VectorType.TABLESTORE
  649. | VectorType.TENCENT
  650. | VectorType.HUAWEI_CLOUD
  651. | VectorType.MATRIXONE
  652. | VectorType.CLICKZETTA
  653. ):
  654. return {
  655. "retrieval_method": [
  656. RetrievalMethod.SEMANTIC_SEARCH.value,
  657. RetrievalMethod.FULL_TEXT_SEARCH.value,
  658. RetrievalMethod.HYBRID_SEARCH.value,
  659. ]
  660. }
  661. case _:
  662. raise ValueError(f"Unsupported vector db type {vector_type}.")
  663. class DatasetErrorDocs(Resource):
  664. @setup_required
  665. @login_required
  666. @account_initialization_required
  667. def get(self, dataset_id):
  668. dataset_id_str = str(dataset_id)
  669. dataset = DatasetService.get_dataset(dataset_id_str)
  670. if dataset is None:
  671. raise NotFound("Dataset not found.")
  672. results = DocumentService.get_error_documents_by_dataset_id(dataset_id_str)
  673. return {"data": [marshal(item, document_status_fields) for item in results], "total": len(results)}, 200
  674. class DatasetPermissionUserListApi(Resource):
  675. @setup_required
  676. @login_required
  677. @account_initialization_required
  678. def get(self, dataset_id):
  679. dataset_id_str = str(dataset_id)
  680. dataset = DatasetService.get_dataset(dataset_id_str)
  681. if dataset is None:
  682. raise NotFound("Dataset not found.")
  683. try:
  684. DatasetService.check_dataset_permission(dataset, current_user)
  685. except services.errors.account.NoPermissionError as e:
  686. raise Forbidden(str(e))
  687. partial_members_list = DatasetPermissionService.get_dataset_partial_member_list(dataset_id_str)
  688. return {
  689. "data": partial_members_list,
  690. }, 200
  691. class DatasetAutoDisableLogApi(Resource):
  692. @setup_required
  693. @login_required
  694. @account_initialization_required
  695. def get(self, dataset_id):
  696. dataset_id_str = str(dataset_id)
  697. dataset = DatasetService.get_dataset(dataset_id_str)
  698. if dataset is None:
  699. raise NotFound("Dataset not found.")
  700. return DatasetService.get_dataset_auto_disable_logs(dataset_id_str), 200
  701. api.add_resource(DatasetListApi, "/datasets")
  702. api.add_resource(DatasetApi, "/datasets/<uuid:dataset_id>")
  703. api.add_resource(DatasetUseCheckApi, "/datasets/<uuid:dataset_id>/use-check")
  704. api.add_resource(DatasetQueryApi, "/datasets/<uuid:dataset_id>/queries")
  705. api.add_resource(DatasetErrorDocs, "/datasets/<uuid:dataset_id>/error-docs")
  706. api.add_resource(DatasetIndexingEstimateApi, "/datasets/indexing-estimate")
  707. api.add_resource(DatasetRelatedAppListApi, "/datasets/<uuid:dataset_id>/related-apps")
  708. api.add_resource(DatasetIndexingStatusApi, "/datasets/<uuid:dataset_id>/indexing-status")
  709. api.add_resource(DatasetApiKeyApi, "/datasets/api-keys")
  710. api.add_resource(DatasetApiDeleteApi, "/datasets/api-keys/<uuid:api_key_id>")
  711. api.add_resource(DatasetApiBaseUrlApi, "/datasets/api-base-info")
  712. api.add_resource(DatasetRetrievalSettingApi, "/datasets/retrieval-setting")
  713. api.add_resource(DatasetRetrievalSettingMockApi, "/datasets/retrieval-setting/<string:vector_type>")
  714. api.add_resource(DatasetPermissionUserListApi, "/datasets/<uuid:dataset_id>/permission-part-users")
  715. api.add_resource(DatasetAutoDisableLogApi, "/datasets/<uuid:dataset_id>/auto-disable-logs")