| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 | 
							- import os
 - from collections.abc import Generator
 - 
 - import pytest
 - 
 - from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
 - from core.model_runtime.entities.message_entities import (
 -     AssistantPromptMessage,
 -     PromptMessageTool,
 -     SystemPromptMessage,
 -     TextPromptMessageContent,
 -     UserPromptMessage,
 - )
 - from core.model_runtime.entities.model_entities import AIModelEntity
 - from core.model_runtime.errors.validate import CredentialsValidateFailedError
 - from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel
 - from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
 - 
 - 
 - def test_predefined_models():
 -     model = ChatGLMLargeLanguageModel()
 -     model_schemas = model.predefined_models()
 -     assert len(model_schemas) >= 1
 -     assert isinstance(model_schemas[0], AIModelEntity)
 - 
 - @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
 - def test_validate_credentials_for_chat_model(setup_openai_mock):
 -     model = ChatGLMLargeLanguageModel()
 - 
 -     with pytest.raises(CredentialsValidateFailedError):
 -         model.validate_credentials(
 -             model='chatglm2-6b',
 -             credentials={
 -                 'api_base': 'invalid_key'
 -             }
 -         )
 - 
 -     model.validate_credentials(
 -         model='chatglm2-6b',
 -         credentials={
 -             'api_base': os.environ.get('CHATGLM_API_BASE')
 -         }
 -     )
 - 
 - @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
 - def test_invoke_model(setup_openai_mock):
 -     model = ChatGLMLargeLanguageModel()
 - 
 -     response = model.invoke(
 -         model='chatglm2-6b',
 -         credentials={
 -             'api_base': os.environ.get('CHATGLM_API_BASE')
 -         },
 -         prompt_messages=[
 -             SystemPromptMessage(
 -                 content='You are a helpful AI assistant.',
 -             ),
 -             UserPromptMessage(
 -                 content='Hello World!'
 -             )
 -         ],
 -         model_parameters={
 -             'temperature': 0.7,
 -             'top_p': 1.0,
 -         },
 -         stop=['you'],
 -         user="abc-123",
 -         stream=False
 -     )
 - 
 -     assert isinstance(response, LLMResult)
 -     assert len(response.message.content) > 0
 -     assert response.usage.total_tokens > 0
 - 
 - @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
 - def test_invoke_stream_model(setup_openai_mock):
 -     model = ChatGLMLargeLanguageModel()
 - 
 -     response = model.invoke(
 -         model='chatglm2-6b',
 -         credentials={
 -             'api_base': os.environ.get('CHATGLM_API_BASE')
 -         },
 -         prompt_messages=[
 -             SystemPromptMessage(
 -                 content='You are a helpful AI assistant.',
 -             ),
 -             UserPromptMessage(
 -                 content='Hello World!'
 -             )
 -         ],
 -         model_parameters={
 -             'temperature': 0.7,
 -             'top_p': 1.0,
 -         },
 -         stop=['you'],
 -         stream=True,
 -         user="abc-123"
 -     )
 - 
 -     assert isinstance(response, Generator)
 -     for chunk in response:
 -         assert isinstance(chunk, LLMResultChunk)
 -         assert isinstance(chunk.delta, LLMResultChunkDelta)
 -         assert isinstance(chunk.delta.message, AssistantPromptMessage)
 -         assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
 - 
 - @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
 - def test_invoke_stream_model_with_functions(setup_openai_mock):
 -     model = ChatGLMLargeLanguageModel()
 - 
 -     response = model.invoke(
 -         model='chatglm3-6b',
 -         credentials={
 -             'api_base': os.environ.get('CHATGLM_API_BASE')
 -         },
 -         prompt_messages=[
 -             SystemPromptMessage(
 -                 content='你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。'
 -             ),
 -             UserPromptMessage(
 -                 content='波士顿天气如何?'
 -             )
 -         ],
 -         model_parameters={
 -             'temperature': 0,
 -             'top_p': 1.0,
 -         },
 -         stop=['you'],
 -         user='abc-123',
 -         stream=True,
 -         tools=[
 -             PromptMessageTool(
 -                 name='get_current_weather',
 -                 description='Get the current weather in a given location',
 -                 parameters={
 -                     "type": "object",
 -                     "properties": {
 -                         "location": {
 -                         "type": "string",
 -                             "description": "The city and state e.g. San Francisco, CA"
 -                         },
 -                         "unit": {
 -                             "type": "string",
 -                             "enum": ["celsius", "fahrenheit"]
 -                         }
 -                     },
 -                     "required": [
 -                         "location"
 -                     ]
 -                 }
 -             )
 -         ]
 -     )
 - 
 -     assert isinstance(response, Generator)
 -     
 -     call: LLMResultChunk = None
 -     chunks = []
 - 
 -     for chunk in response:
 -         chunks.append(chunk)
 -         assert isinstance(chunk, LLMResultChunk)
 -         assert isinstance(chunk.delta, LLMResultChunkDelta)
 -         assert isinstance(chunk.delta.message, AssistantPromptMessage)
 -         assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
 - 
 -         if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:
 -             call = chunk
 -             break
 - 
 -     assert call is not None
 -     assert call.delta.message.tool_calls[0].function.name == 'get_current_weather'
 - 
 - @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
 - def test_invoke_model_with_functions(setup_openai_mock):
 -     model = ChatGLMLargeLanguageModel()
 - 
 -     response = model.invoke(
 -         model='chatglm3-6b',
 -         credentials={
 -             'api_base': os.environ.get('CHATGLM_API_BASE')
 -         },
 -         prompt_messages=[
 -             UserPromptMessage(
 -                 content='What is the weather like in San Francisco?'
 -             )
 -         ],
 -         model_parameters={
 -             'temperature': 0.7,
 -             'top_p': 1.0,
 -         },
 -         stop=['you'],
 -         user='abc-123',
 -         stream=False,
 -         tools=[
 -             PromptMessageTool(
 -                 name='get_current_weather',
 -                 description='Get the current weather in a given location',
 -                 parameters={
 -                     "type": "object",
 -                     "properties": {
 -                         "location": {
 -                         "type": "string",
 -                             "description": "The city and state e.g. San Francisco, CA"
 -                         },
 -                         "unit": {
 -                             "type": "string",
 -                             "enum": [
 -                                 "c",
 -                                 "f"
 -                             ]
 -                         }
 -                     },
 -                     "required": [
 -                         "location"
 -                     ]
 -                 }
 -             )
 -         ]
 -     )
 - 
 -     assert isinstance(response, LLMResult)
 -     assert len(response.message.content) > 0
 -     assert response.usage.total_tokens > 0
 -     assert response.message.tool_calls[0].function.name == 'get_current_weather'
 - 
 - 
 - def test_get_num_tokens():
 -     model = ChatGLMLargeLanguageModel()
 - 
 -     num_tokens = model.get_num_tokens(
 -         model='chatglm2-6b',
 -         credentials={
 -             'api_base': os.environ.get('CHATGLM_API_BASE')
 -         },
 -         prompt_messages=[
 -             SystemPromptMessage(
 -                 content='You are a helpful AI assistant.',
 -             ),
 -             UserPromptMessage(
 -                 content='Hello World!'
 -             )
 -         ],
 -         tools=[
 -             PromptMessageTool(
 -                 name='get_current_weather',
 -                 description='Get the current weather in a given location',
 -                 parameters={
 -                     "type": "object",
 -                     "properties": {
 -                         "location": {
 -                         "type": "string",
 -                             "description": "The city and state e.g. San Francisco, CA"
 -                         },
 -                         "unit": {
 -                             "type": "string",
 -                             "enum": [
 -                                 "c",
 -                                 "f"
 -                             ]
 -                         }
 -                     },
 -                     "required": [
 -                         "location"
 -                     ]
 -                 }
 -             )
 -         ]
 -     )
 - 
 -     assert isinstance(num_tokens, int)
 -     assert num_tokens == 77
 - 
 -     num_tokens = model.get_num_tokens(
 -         model='chatglm2-6b',
 -         credentials={
 -             'api_base': os.environ.get('CHATGLM_API_BASE')
 -         },
 -         prompt_messages=[
 -             SystemPromptMessage(
 -                 content='You are a helpful AI assistant.',
 -             ),
 -             UserPromptMessage(
 -                 content='Hello World!'
 -             )
 -         ],
 -     )
 - 
 -     assert isinstance(num_tokens, int)
 -     assert num_tokens == 21
 
 
  |