| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 | 
							- import logging
 - import time
 - 
 - import click
 - from celery import shared_task
 - from sqlalchemy import select
 - 
 - from configs import dify_config
 - from core.indexing_runner import DocumentIsPausedError, IndexingRunner
 - from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
 - from extensions.ext_database import db
 - from libs.datetime_utils import naive_utc_now
 - from models.dataset import Dataset, Document, DocumentSegment
 - from services.feature_service import FeatureService
 - 
 - logger = logging.getLogger(__name__)
 - 
 - 
 - @shared_task(queue="dataset")
 - def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
 -     """
 -     Async process document
 -     :param dataset_id:
 -     :param document_ids:
 - 
 -     Usage: duplicate_document_indexing_task.delay(dataset_id, document_ids)
 -     """
 -     documents = []
 -     start_at = time.perf_counter()
 - 
 -     try:
 -         dataset = db.session.query(Dataset).where(Dataset.id == dataset_id).first()
 -         if dataset is None:
 -             logger.info(click.style(f"Dataset not found: {dataset_id}", fg="red"))
 -             db.session.close()
 -             return
 - 
 -         # check document limit
 -         features = FeatureService.get_features(dataset.tenant_id)
 -         try:
 -             if features.billing.enabled:
 -                 vector_space = features.vector_space
 -                 count = len(document_ids)
 -                 if features.billing.subscription.plan == "sandbox" and count > 1:
 -                     raise ValueError("Your current plan does not support batch upload, please upgrade your plan.")
 -                 batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
 -                 if count > batch_upload_limit:
 -                     raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 -                 current = int(getattr(vector_space, "size", 0) or 0)
 -                 limit = int(getattr(vector_space, "limit", 0) or 0)
 -                 if limit > 0 and (current + count) > limit:
 -                     raise ValueError(
 -                         "Your total number of documents plus the number of uploads have exceeded the limit of "
 -                         "your subscription."
 -                     )
 -         except Exception as e:
 -             for document_id in document_ids:
 -                 document = (
 -                     db.session.query(Document)
 -                     .where(Document.id == document_id, Document.dataset_id == dataset_id)
 -                     .first()
 -                 )
 -                 if document:
 -                     document.indexing_status = "error"
 -                     document.error = str(e)
 -                     document.stopped_at = naive_utc_now()
 -                     db.session.add(document)
 -             db.session.commit()
 -             return
 - 
 -         for document_id in document_ids:
 -             logger.info(click.style(f"Start process document: {document_id}", fg="green"))
 - 
 -             document = (
 -                 db.session.query(Document).where(Document.id == document_id, Document.dataset_id == dataset_id).first()
 -             )
 - 
 -             if document:
 -                 # clean old data
 -                 index_type = document.doc_form
 -                 index_processor = IndexProcessorFactory(index_type).init_index_processor()
 - 
 -                 segments = db.session.scalars(
 -                     select(DocumentSegment).where(DocumentSegment.document_id == document_id)
 -                 ).all()
 -                 if segments:
 -                     index_node_ids = [segment.index_node_id for segment in segments]
 - 
 -                     # delete from vector index
 -                     index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
 - 
 -                     for segment in segments:
 -                         db.session.delete(segment)
 -                     db.session.commit()
 - 
 -                 document.indexing_status = "parsing"
 -                 document.processing_started_at = naive_utc_now()
 -                 documents.append(document)
 -                 db.session.add(document)
 -         db.session.commit()
 - 
 -         indexing_runner = IndexingRunner()
 -         indexing_runner.run(documents)
 -         end_at = time.perf_counter()
 -         logger.info(click.style(f"Processed dataset: {dataset_id} latency: {end_at - start_at}", fg="green"))
 -     except DocumentIsPausedError as ex:
 -         logger.info(click.style(str(ex), fg="yellow"))
 -     except Exception:
 -         logger.exception("duplicate_document_indexing_task failed, dataset_id: %s", dataset_id)
 -     finally:
 -         db.session.close()
 
 
  |