Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

clean_document_task.py 3.4KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788
  1. import logging
  2. import time
  3. from typing import Optional
  4. import click
  5. from celery import shared_task
  6. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  7. from core.tools.utils.web_reader_tool import get_image_upload_file_ids
  8. from extensions.ext_database import db
  9. from extensions.ext_storage import storage
  10. from models.dataset import Dataset, DatasetMetadataBinding, DocumentSegment
  11. from models.model import UploadFile
  12. @shared_task(queue="dataset")
  13. def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_id: Optional[str]):
  14. """
  15. Clean document when document deleted.
  16. :param document_id: document id
  17. :param dataset_id: dataset id
  18. :param doc_form: doc_form
  19. :param file_id: file id
  20. Usage: clean_document_task.delay(document_id, dataset_id)
  21. """
  22. logging.info(click.style(f"Start clean document when document deleted: {document_id}", fg="green"))
  23. start_at = time.perf_counter()
  24. try:
  25. dataset = db.session.query(Dataset).where(Dataset.id == dataset_id).first()
  26. if not dataset:
  27. raise Exception("Document has no dataset")
  28. segments = db.session.query(DocumentSegment).where(DocumentSegment.document_id == document_id).all()
  29. # check segment is exist
  30. if segments:
  31. index_node_ids = [segment.index_node_id for segment in segments]
  32. index_processor = IndexProcessorFactory(doc_form).init_index_processor()
  33. index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
  34. for segment in segments:
  35. image_upload_file_ids = get_image_upload_file_ids(segment.content)
  36. for upload_file_id in image_upload_file_ids:
  37. image_file = db.session.query(UploadFile).where(UploadFile.id == upload_file_id).first()
  38. if image_file is None:
  39. continue
  40. try:
  41. storage.delete(image_file.key)
  42. except Exception:
  43. logging.exception(
  44. "Delete image_files failed when storage deleted, \
  45. image_upload_file_is: %s",
  46. upload_file_id,
  47. )
  48. db.session.delete(image_file)
  49. db.session.delete(segment)
  50. db.session.commit()
  51. if file_id:
  52. file = db.session.query(UploadFile).where(UploadFile.id == file_id).first()
  53. if file:
  54. try:
  55. storage.delete(file.key)
  56. except Exception:
  57. logging.exception("Delete file failed when document deleted, file_id: %s", file_id)
  58. db.session.delete(file)
  59. db.session.commit()
  60. # delete dataset metadata binding
  61. db.session.query(DatasetMetadataBinding).where(
  62. DatasetMetadataBinding.dataset_id == dataset_id,
  63. DatasetMetadataBinding.document_id == document_id,
  64. ).delete()
  65. db.session.commit()
  66. end_at = time.perf_counter()
  67. logging.info(
  68. click.style(
  69. f"Cleaned document when document deleted: {document_id} latency: {end_at - start_at}",
  70. fg="green",
  71. )
  72. )
  73. except Exception:
  74. logging.exception("Cleaned document when document deleted failed")
  75. finally:
  76. db.session.close()