Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

document.py 30KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697
  1. import json
  2. from flask import request
  3. from flask_restx import marshal, reqparse
  4. from sqlalchemy import desc, select
  5. from werkzeug.exceptions import Forbidden, NotFound
  6. import services
  7. from controllers.common.errors import (
  8. FilenameNotExistsError,
  9. FileTooLargeError,
  10. NoFileUploadedError,
  11. TooManyFilesError,
  12. UnsupportedFileTypeError,
  13. )
  14. from controllers.service_api import service_api_ns
  15. from controllers.service_api.app.error import ProviderNotInitializeError
  16. from controllers.service_api.dataset.error import (
  17. ArchivedDocumentImmutableError,
  18. DocumentIndexingError,
  19. InvalidMetadataError,
  20. )
  21. from controllers.service_api.wraps import (
  22. DatasetApiResource,
  23. cloud_edition_billing_rate_limit_check,
  24. cloud_edition_billing_resource_check,
  25. )
  26. from core.errors.error import ProviderTokenNotInitError
  27. from extensions.ext_database import db
  28. from fields.document_fields import document_fields, document_status_fields
  29. from libs.login import current_user
  30. from models.dataset import Dataset, Document, DocumentSegment
  31. from services.dataset_service import DatasetService, DocumentService
  32. from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
  33. from services.file_service import FileService
  34. # Define parsers for document operations
  35. document_text_create_parser = reqparse.RequestParser()
  36. document_text_create_parser.add_argument("name", type=str, required=True, nullable=False, location="json")
  37. document_text_create_parser.add_argument("text", type=str, required=True, nullable=False, location="json")
  38. document_text_create_parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  39. document_text_create_parser.add_argument("original_document_id", type=str, required=False, location="json")
  40. document_text_create_parser.add_argument(
  41. "doc_form", type=str, default="text_model", required=False, nullable=False, location="json"
  42. )
  43. document_text_create_parser.add_argument(
  44. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  45. )
  46. document_text_create_parser.add_argument(
  47. "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
  48. )
  49. document_text_create_parser.add_argument("retrieval_model", type=dict, required=False, nullable=True, location="json")
  50. document_text_create_parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
  51. document_text_create_parser.add_argument(
  52. "embedding_model_provider", type=str, required=False, nullable=True, location="json"
  53. )
  54. document_text_update_parser = reqparse.RequestParser()
  55. document_text_update_parser.add_argument("name", type=str, required=False, nullable=True, location="json")
  56. document_text_update_parser.add_argument("text", type=str, required=False, nullable=True, location="json")
  57. document_text_update_parser.add_argument("process_rule", type=dict, required=False, nullable=True, location="json")
  58. document_text_update_parser.add_argument(
  59. "doc_form", type=str, default="text_model", required=False, nullable=False, location="json"
  60. )
  61. document_text_update_parser.add_argument(
  62. "doc_language", type=str, default="English", required=False, nullable=False, location="json"
  63. )
  64. document_text_update_parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
  65. @service_api_ns.route(
  66. "/datasets/<uuid:dataset_id>/document/create_by_text",
  67. "/datasets/<uuid:dataset_id>/document/create-by-text",
  68. )
  69. class DocumentAddByTextApi(DatasetApiResource):
  70. """Resource for documents."""
  71. @service_api_ns.expect(document_text_create_parser)
  72. @service_api_ns.doc("create_document_by_text")
  73. @service_api_ns.doc(description="Create a new document by providing text content")
  74. @service_api_ns.doc(params={"dataset_id": "Dataset ID"})
  75. @service_api_ns.doc(
  76. responses={
  77. 200: "Document created successfully",
  78. 401: "Unauthorized - invalid API token",
  79. 400: "Bad request - invalid parameters",
  80. }
  81. )
  82. @cloud_edition_billing_resource_check("vector_space", "dataset")
  83. @cloud_edition_billing_resource_check("documents", "dataset")
  84. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  85. def post(self, tenant_id, dataset_id):
  86. """Create document by text."""
  87. args = document_text_create_parser.parse_args()
  88. dataset_id = str(dataset_id)
  89. tenant_id = str(tenant_id)
  90. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  91. if not dataset:
  92. raise ValueError("Dataset does not exist.")
  93. if not dataset.indexing_technique and not args["indexing_technique"]:
  94. raise ValueError("indexing_technique is required.")
  95. text = args.get("text")
  96. name = args.get("name")
  97. if text is None or name is None:
  98. raise ValueError("Both 'text' and 'name' must be non-null values.")
  99. embedding_model_provider = args.get("embedding_model_provider")
  100. embedding_model = args.get("embedding_model")
  101. if embedding_model_provider and embedding_model:
  102. DatasetService.check_embedding_model_setting(tenant_id, embedding_model_provider, embedding_model)
  103. retrieval_model = args.get("retrieval_model")
  104. if (
  105. retrieval_model
  106. and retrieval_model.get("reranking_model")
  107. and retrieval_model.get("reranking_model").get("reranking_provider_name")
  108. ):
  109. DatasetService.check_reranking_model_setting(
  110. tenant_id,
  111. retrieval_model.get("reranking_model").get("reranking_provider_name"),
  112. retrieval_model.get("reranking_model").get("reranking_model_name"),
  113. )
  114. if not current_user:
  115. raise ValueError("current_user is required")
  116. upload_file = FileService(db.engine).upload_text(
  117. text=str(text), text_name=str(name), user_id=current_user.id, tenant_id=tenant_id
  118. )
  119. data_source = {
  120. "type": "upload_file",
  121. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  122. }
  123. args["data_source"] = data_source
  124. knowledge_config = KnowledgeConfig(**args)
  125. # validate args
  126. DocumentService.document_create_args_validate(knowledge_config)
  127. if not current_user:
  128. raise ValueError("current_user is required")
  129. try:
  130. documents, batch = DocumentService.save_document_with_dataset_id(
  131. dataset=dataset,
  132. knowledge_config=knowledge_config,
  133. account=current_user,
  134. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  135. created_from="api",
  136. )
  137. except ProviderTokenNotInitError as ex:
  138. raise ProviderNotInitializeError(ex.description)
  139. document = documents[0]
  140. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  141. return documents_and_batch_fields, 200
  142. @service_api_ns.route(
  143. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_text",
  144. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-text",
  145. )
  146. class DocumentUpdateByTextApi(DatasetApiResource):
  147. """Resource for update documents."""
  148. @service_api_ns.expect(document_text_update_parser)
  149. @service_api_ns.doc("update_document_by_text")
  150. @service_api_ns.doc(description="Update an existing document by providing text content")
  151. @service_api_ns.doc(params={"dataset_id": "Dataset ID", "document_id": "Document ID"})
  152. @service_api_ns.doc(
  153. responses={
  154. 200: "Document updated successfully",
  155. 401: "Unauthorized - invalid API token",
  156. 404: "Document not found",
  157. }
  158. )
  159. @cloud_edition_billing_resource_check("vector_space", "dataset")
  160. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  161. def post(self, tenant_id, dataset_id, document_id):
  162. """Update document by text."""
  163. args = document_text_update_parser.parse_args()
  164. dataset_id = str(dataset_id)
  165. tenant_id = str(tenant_id)
  166. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  167. if not dataset:
  168. raise ValueError("Dataset does not exist.")
  169. retrieval_model = args.get("retrieval_model")
  170. if (
  171. retrieval_model
  172. and retrieval_model.get("reranking_model")
  173. and retrieval_model.get("reranking_model").get("reranking_provider_name")
  174. ):
  175. DatasetService.check_reranking_model_setting(
  176. tenant_id,
  177. retrieval_model.get("reranking_model").get("reranking_provider_name"),
  178. retrieval_model.get("reranking_model").get("reranking_model_name"),
  179. )
  180. # indexing_technique is already set in dataset since this is an update
  181. args["indexing_technique"] = dataset.indexing_technique
  182. if args["text"]:
  183. text = args.get("text")
  184. name = args.get("name")
  185. if text is None or name is None:
  186. raise ValueError("Both text and name must be strings.")
  187. if not current_user:
  188. raise ValueError("current_user is required")
  189. upload_file = FileService(db.engine).upload_text(
  190. text=str(text), text_name=str(name), user_id=current_user.id, tenant_id=tenant_id
  191. )
  192. data_source = {
  193. "type": "upload_file",
  194. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  195. }
  196. args["data_source"] = data_source
  197. # validate args
  198. args["original_document_id"] = str(document_id)
  199. knowledge_config = KnowledgeConfig(**args)
  200. DocumentService.document_create_args_validate(knowledge_config)
  201. try:
  202. documents, batch = DocumentService.save_document_with_dataset_id(
  203. dataset=dataset,
  204. knowledge_config=knowledge_config,
  205. account=current_user,
  206. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  207. created_from="api",
  208. )
  209. except ProviderTokenNotInitError as ex:
  210. raise ProviderNotInitializeError(ex.description)
  211. document = documents[0]
  212. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  213. return documents_and_batch_fields, 200
  214. @service_api_ns.route(
  215. "/datasets/<uuid:dataset_id>/document/create_by_file",
  216. "/datasets/<uuid:dataset_id>/document/create-by-file",
  217. )
  218. class DocumentAddByFileApi(DatasetApiResource):
  219. """Resource for documents."""
  220. @service_api_ns.doc("create_document_by_file")
  221. @service_api_ns.doc(description="Create a new document by uploading a file")
  222. @service_api_ns.doc(params={"dataset_id": "Dataset ID"})
  223. @service_api_ns.doc(
  224. responses={
  225. 200: "Document created successfully",
  226. 401: "Unauthorized - invalid API token",
  227. 400: "Bad request - invalid file or parameters",
  228. }
  229. )
  230. @cloud_edition_billing_resource_check("vector_space", "dataset")
  231. @cloud_edition_billing_resource_check("documents", "dataset")
  232. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  233. def post(self, tenant_id, dataset_id):
  234. """Create document by upload file."""
  235. args = {}
  236. if "data" in request.form:
  237. args = json.loads(request.form["data"])
  238. if "doc_form" not in args:
  239. args["doc_form"] = "text_model"
  240. if "doc_language" not in args:
  241. args["doc_language"] = "English"
  242. # get dataset info
  243. dataset_id = str(dataset_id)
  244. tenant_id = str(tenant_id)
  245. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  246. if not dataset:
  247. raise ValueError("Dataset does not exist.")
  248. if dataset.provider == "external":
  249. raise ValueError("External datasets are not supported.")
  250. indexing_technique = args.get("indexing_technique") or dataset.indexing_technique
  251. if not indexing_technique:
  252. raise ValueError("indexing_technique is required.")
  253. args["indexing_technique"] = indexing_technique
  254. if "embedding_model_provider" in args:
  255. DatasetService.check_embedding_model_setting(
  256. tenant_id, args["embedding_model_provider"], args["embedding_model"]
  257. )
  258. if (
  259. "retrieval_model" in args
  260. and args["retrieval_model"].get("reranking_model")
  261. and args["retrieval_model"].get("reranking_model").get("reranking_provider_name")
  262. ):
  263. DatasetService.check_reranking_model_setting(
  264. tenant_id,
  265. args["retrieval_model"].get("reranking_model").get("reranking_provider_name"),
  266. args["retrieval_model"].get("reranking_model").get("reranking_model_name"),
  267. )
  268. # check file
  269. if "file" not in request.files:
  270. raise NoFileUploadedError()
  271. if len(request.files) > 1:
  272. raise TooManyFilesError()
  273. # save file info
  274. file = request.files["file"]
  275. if not file.filename:
  276. raise FilenameNotExistsError
  277. if not current_user:
  278. raise ValueError("current_user is required")
  279. upload_file = FileService(db.engine).upload_file(
  280. filename=file.filename,
  281. content=file.read(),
  282. mimetype=file.mimetype,
  283. user=current_user,
  284. source="datasets",
  285. )
  286. data_source = {
  287. "type": "upload_file",
  288. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  289. }
  290. args["data_source"] = data_source
  291. # validate args
  292. knowledge_config = KnowledgeConfig(**args)
  293. DocumentService.document_create_args_validate(knowledge_config)
  294. dataset_process_rule = dataset.latest_process_rule if "process_rule" not in args else None
  295. if not knowledge_config.original_document_id and not dataset_process_rule and not knowledge_config.process_rule:
  296. raise ValueError("process_rule is required.")
  297. try:
  298. documents, batch = DocumentService.save_document_with_dataset_id(
  299. dataset=dataset,
  300. knowledge_config=knowledge_config,
  301. account=dataset.created_by_account,
  302. dataset_process_rule=dataset_process_rule,
  303. created_from="api",
  304. )
  305. except ProviderTokenNotInitError as ex:
  306. raise ProviderNotInitializeError(ex.description)
  307. document = documents[0]
  308. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": batch}
  309. return documents_and_batch_fields, 200
  310. @service_api_ns.route(
  311. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update_by_file",
  312. "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/update-by-file",
  313. )
  314. class DocumentUpdateByFileApi(DatasetApiResource):
  315. """Resource for update documents."""
  316. @service_api_ns.doc("update_document_by_file")
  317. @service_api_ns.doc(description="Update an existing document by uploading a file")
  318. @service_api_ns.doc(params={"dataset_id": "Dataset ID", "document_id": "Document ID"})
  319. @service_api_ns.doc(
  320. responses={
  321. 200: "Document updated successfully",
  322. 401: "Unauthorized - invalid API token",
  323. 404: "Document not found",
  324. }
  325. )
  326. @cloud_edition_billing_resource_check("vector_space", "dataset")
  327. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  328. def post(self, tenant_id, dataset_id, document_id):
  329. """Update document by upload file."""
  330. args = {}
  331. if "data" in request.form:
  332. args = json.loads(request.form["data"])
  333. if "doc_form" not in args:
  334. args["doc_form"] = "text_model"
  335. if "doc_language" not in args:
  336. args["doc_language"] = "English"
  337. # get dataset info
  338. dataset_id = str(dataset_id)
  339. tenant_id = str(tenant_id)
  340. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  341. if not dataset:
  342. raise ValueError("Dataset does not exist.")
  343. if dataset.provider == "external":
  344. raise ValueError("External datasets are not supported.")
  345. # indexing_technique is already set in dataset since this is an update
  346. args["indexing_technique"] = dataset.indexing_technique
  347. if "file" in request.files:
  348. # save file info
  349. file = request.files["file"]
  350. if len(request.files) > 1:
  351. raise TooManyFilesError()
  352. if not file.filename:
  353. raise FilenameNotExistsError
  354. if not current_user:
  355. raise ValueError("current_user is required")
  356. try:
  357. upload_file = FileService(db.engine).upload_file(
  358. filename=file.filename,
  359. content=file.read(),
  360. mimetype=file.mimetype,
  361. user=current_user,
  362. source="datasets",
  363. )
  364. except services.errors.file.FileTooLargeError as file_too_large_error:
  365. raise FileTooLargeError(file_too_large_error.description)
  366. except services.errors.file.UnsupportedFileTypeError:
  367. raise UnsupportedFileTypeError()
  368. data_source = {
  369. "type": "upload_file",
  370. "info_list": {"data_source_type": "upload_file", "file_info_list": {"file_ids": [upload_file.id]}},
  371. }
  372. args["data_source"] = data_source
  373. # validate args
  374. args["original_document_id"] = str(document_id)
  375. knowledge_config = KnowledgeConfig(**args)
  376. DocumentService.document_create_args_validate(knowledge_config)
  377. try:
  378. documents, _ = DocumentService.save_document_with_dataset_id(
  379. dataset=dataset,
  380. knowledge_config=knowledge_config,
  381. account=dataset.created_by_account,
  382. dataset_process_rule=dataset.latest_process_rule if "process_rule" not in args else None,
  383. created_from="api",
  384. )
  385. except ProviderTokenNotInitError as ex:
  386. raise ProviderNotInitializeError(ex.description)
  387. document = documents[0]
  388. documents_and_batch_fields = {"document": marshal(document, document_fields), "batch": document.batch}
  389. return documents_and_batch_fields, 200
  390. @service_api_ns.route("/datasets/<uuid:dataset_id>/documents")
  391. class DocumentListApi(DatasetApiResource):
  392. @service_api_ns.doc("list_documents")
  393. @service_api_ns.doc(description="List all documents in a dataset")
  394. @service_api_ns.doc(params={"dataset_id": "Dataset ID"})
  395. @service_api_ns.doc(
  396. responses={
  397. 200: "Documents retrieved successfully",
  398. 401: "Unauthorized - invalid API token",
  399. 404: "Dataset not found",
  400. }
  401. )
  402. def get(self, tenant_id, dataset_id):
  403. dataset_id = str(dataset_id)
  404. tenant_id = str(tenant_id)
  405. page = request.args.get("page", default=1, type=int)
  406. limit = request.args.get("limit", default=20, type=int)
  407. search = request.args.get("keyword", default=None, type=str)
  408. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  409. if not dataset:
  410. raise NotFound("Dataset not found.")
  411. query = select(Document).filter_by(dataset_id=str(dataset_id), tenant_id=tenant_id)
  412. if search:
  413. search = f"%{search}%"
  414. query = query.where(Document.name.like(search))
  415. query = query.order_by(desc(Document.created_at), desc(Document.position))
  416. paginated_documents = db.paginate(select=query, page=page, per_page=limit, max_per_page=100, error_out=False)
  417. documents = paginated_documents.items
  418. response = {
  419. "data": marshal(documents, document_fields),
  420. "has_more": len(documents) == limit,
  421. "limit": limit,
  422. "total": paginated_documents.total,
  423. "page": page,
  424. }
  425. return response
  426. @service_api_ns.route("/datasets/<uuid:dataset_id>/documents/<string:batch>/indexing-status")
  427. class DocumentIndexingStatusApi(DatasetApiResource):
  428. @service_api_ns.doc("get_document_indexing_status")
  429. @service_api_ns.doc(description="Get indexing status for documents in a batch")
  430. @service_api_ns.doc(params={"dataset_id": "Dataset ID", "batch": "Batch ID"})
  431. @service_api_ns.doc(
  432. responses={
  433. 200: "Indexing status retrieved successfully",
  434. 401: "Unauthorized - invalid API token",
  435. 404: "Dataset or documents not found",
  436. }
  437. )
  438. def get(self, tenant_id, dataset_id, batch):
  439. dataset_id = str(dataset_id)
  440. batch = str(batch)
  441. tenant_id = str(tenant_id)
  442. # get dataset
  443. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  444. if not dataset:
  445. raise NotFound("Dataset not found.")
  446. # get documents
  447. documents = DocumentService.get_batch_documents(dataset_id, batch)
  448. if not documents:
  449. raise NotFound("Documents not found.")
  450. documents_status = []
  451. for document in documents:
  452. completed_segments = (
  453. db.session.query(DocumentSegment)
  454. .where(
  455. DocumentSegment.completed_at.isnot(None),
  456. DocumentSegment.document_id == str(document.id),
  457. DocumentSegment.status != "re_segment",
  458. )
  459. .count()
  460. )
  461. total_segments = (
  462. db.session.query(DocumentSegment)
  463. .where(DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment")
  464. .count()
  465. )
  466. # Create a dictionary with document attributes and additional fields
  467. document_dict = {
  468. "id": document.id,
  469. "indexing_status": "paused" if document.is_paused else document.indexing_status,
  470. "processing_started_at": document.processing_started_at,
  471. "parsing_completed_at": document.parsing_completed_at,
  472. "cleaning_completed_at": document.cleaning_completed_at,
  473. "splitting_completed_at": document.splitting_completed_at,
  474. "completed_at": document.completed_at,
  475. "paused_at": document.paused_at,
  476. "error": document.error,
  477. "stopped_at": document.stopped_at,
  478. "completed_segments": completed_segments,
  479. "total_segments": total_segments,
  480. }
  481. documents_status.append(marshal(document_dict, document_status_fields))
  482. data = {"data": documents_status}
  483. return data
  484. @service_api_ns.route("/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
  485. class DocumentApi(DatasetApiResource):
  486. METADATA_CHOICES = {"all", "only", "without"}
  487. @service_api_ns.doc("get_document")
  488. @service_api_ns.doc(description="Get a specific document by ID")
  489. @service_api_ns.doc(params={"dataset_id": "Dataset ID", "document_id": "Document ID"})
  490. @service_api_ns.doc(
  491. responses={
  492. 200: "Document retrieved successfully",
  493. 401: "Unauthorized - invalid API token",
  494. 403: "Forbidden - insufficient permissions",
  495. 404: "Document not found",
  496. }
  497. )
  498. def get(self, tenant_id, dataset_id, document_id):
  499. dataset_id = str(dataset_id)
  500. document_id = str(document_id)
  501. dataset = self.get_dataset(dataset_id, tenant_id)
  502. document = DocumentService.get_document(dataset.id, document_id)
  503. if not document:
  504. raise NotFound("Document not found.")
  505. if document.tenant_id != str(tenant_id):
  506. raise Forbidden("No permission.")
  507. metadata = request.args.get("metadata", "all")
  508. if metadata not in self.METADATA_CHOICES:
  509. raise InvalidMetadataError(f"Invalid metadata value: {metadata}")
  510. if metadata == "only":
  511. response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata_details}
  512. elif metadata == "without":
  513. dataset_process_rules = DatasetService.get_process_rules(dataset_id)
  514. document_process_rules = document.dataset_process_rule.to_dict() if document.dataset_process_rule else {}
  515. data_source_info = document.data_source_detail_dict
  516. response = {
  517. "id": document.id,
  518. "position": document.position,
  519. "data_source_type": document.data_source_type,
  520. "data_source_info": data_source_info,
  521. "dataset_process_rule_id": document.dataset_process_rule_id,
  522. "dataset_process_rule": dataset_process_rules,
  523. "document_process_rule": document_process_rules,
  524. "name": document.name,
  525. "created_from": document.created_from,
  526. "created_by": document.created_by,
  527. "created_at": document.created_at.timestamp(),
  528. "tokens": document.tokens,
  529. "indexing_status": document.indexing_status,
  530. "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
  531. "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
  532. "indexing_latency": document.indexing_latency,
  533. "error": document.error,
  534. "enabled": document.enabled,
  535. "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
  536. "disabled_by": document.disabled_by,
  537. "archived": document.archived,
  538. "segment_count": document.segment_count,
  539. "average_segment_length": document.average_segment_length,
  540. "hit_count": document.hit_count,
  541. "display_status": document.display_status,
  542. "doc_form": document.doc_form,
  543. "doc_language": document.doc_language,
  544. }
  545. else:
  546. dataset_process_rules = DatasetService.get_process_rules(dataset_id)
  547. document_process_rules = document.dataset_process_rule.to_dict() if document.dataset_process_rule else {}
  548. data_source_info = document.data_source_detail_dict
  549. response = {
  550. "id": document.id,
  551. "position": document.position,
  552. "data_source_type": document.data_source_type,
  553. "data_source_info": data_source_info,
  554. "dataset_process_rule_id": document.dataset_process_rule_id,
  555. "dataset_process_rule": dataset_process_rules,
  556. "document_process_rule": document_process_rules,
  557. "name": document.name,
  558. "created_from": document.created_from,
  559. "created_by": document.created_by,
  560. "created_at": document.created_at.timestamp(),
  561. "tokens": document.tokens,
  562. "indexing_status": document.indexing_status,
  563. "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
  564. "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
  565. "indexing_latency": document.indexing_latency,
  566. "error": document.error,
  567. "enabled": document.enabled,
  568. "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
  569. "disabled_by": document.disabled_by,
  570. "archived": document.archived,
  571. "doc_type": document.doc_type,
  572. "doc_metadata": document.doc_metadata_details,
  573. "segment_count": document.segment_count,
  574. "average_segment_length": document.average_segment_length,
  575. "hit_count": document.hit_count,
  576. "display_status": document.display_status,
  577. "doc_form": document.doc_form,
  578. "doc_language": document.doc_language,
  579. }
  580. return response
  581. @service_api_ns.doc("delete_document")
  582. @service_api_ns.doc(description="Delete a document")
  583. @service_api_ns.doc(params={"dataset_id": "Dataset ID", "document_id": "Document ID"})
  584. @service_api_ns.doc(
  585. responses={
  586. 204: "Document deleted successfully",
  587. 401: "Unauthorized - invalid API token",
  588. 403: "Forbidden - document is archived",
  589. 404: "Document not found",
  590. }
  591. )
  592. @cloud_edition_billing_rate_limit_check("knowledge", "dataset")
  593. def delete(self, tenant_id, dataset_id, document_id):
  594. """Delete document."""
  595. document_id = str(document_id)
  596. dataset_id = str(dataset_id)
  597. tenant_id = str(tenant_id)
  598. # get dataset info
  599. dataset = db.session.query(Dataset).where(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  600. if not dataset:
  601. raise ValueError("Dataset does not exist.")
  602. document = DocumentService.get_document(dataset.id, document_id)
  603. # 404 if document not found
  604. if document is None:
  605. raise NotFound("Document Not Exists.")
  606. # 403 if document is archived
  607. if DocumentService.check_archived(document):
  608. raise ArchivedDocumentImmutableError()
  609. try:
  610. # delete document
  611. DocumentService.delete_document(document)
  612. except services.errors.document.DocumentIndexingError:
  613. raise DocumentIndexingError("Cannot delete document during indexing.")
  614. return 204