選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。
crazywoola ea1d459423
Revert "feat: add langfuse llm node input and output" (#16947)
7ヶ月前
..
.idea fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 1年前
.vscode feat/enhance the multi-modal support (#8818) 1年前
configs feat: support Tablestore vector database (#16601) 7ヶ月前
constants fix document extractor node incorrectly processing doc and ppt files (#12902) 8ヶ月前
contexts feat: Add caching mechanism for plugin model schemas (#14898) 8ヶ月前
controllers fix: WorkflowRunDetailApi created_at、finished_at types changed to timestamps (#16821) 7ヶ月前
core Revert "feat: add langfuse llm node input and output" (#16947) 7ヶ月前
docker Set default LOG_LEVEL to INFO for celery workers and beat (#13066) 9ヶ月前
events chore(quota): Update deduct quota (#14337) 8ヶ月前
extensions feat: cleanup free tenants expired data like messages/conversations/workflow_runs/workflow_node_executions (#16490) 7ヶ月前
factories fix: validation for upload methods of non-image files within the work… (#15932) 7ヶ月前
fields fix:weight_type missing when create document in dataset (#16503) 7ヶ月前
libs Update login.py (#15320) 7ヶ月前
migrations Support knowledge metadata filter (#15982) 7ヶ月前
models fix full-doc mode document doesn't reindex after enable or un_archive (#16737) 7ヶ月前
schedule Fix function's name mismatch (#16681) 7ヶ月前
services fix: enhance filename validation and extraction in FileService #16867 (#16869) 7ヶ月前
tasks Revert "feat: add langfuse llm node input and output" (#16947) 7ヶ月前
templates feat: account delete (#11829) 10ヶ月前
tests feat: support Tablestore vector database (#16601) 7ヶ月前
.dockerignore Introduce Plugins (#13836) 8ヶ月前
.env.example feat: support Tablestore vector database (#16601) 7ヶ月前
.ruff.toml chore(api): enhance ruff rules to disallow dangerous functions and modules (#16461) 7ヶ月前
Dockerfile chore: remove useless doc and font (#15838) 7ヶ月前
README.md feat: update backend documentation (#13374) 8ヶ月前
app.py fix(app.py): if condition (#12314) 10ヶ月前
app_factory.py Fix/plugin race condition (#14253) 8ヶ月前
commands.py feat: support Tablestore vector database (#16601) 7ヶ月前
dify_app.py refactor: assembling the app features in modular way (#9129) 11ヶ月前
mypy.ini Remove the useless excluded item in mypy.ini (#16777) 7ヶ月前
poetry.lock feat: support Tablestore vector database (#16601) 7ヶ月前
poetry.toml build: initial support for poetry build tool (#4513) 1年前
pyproject.toml feat: support Tablestore vector database (#16601) 7ヶ月前
pytest.ini fix: add missing package xinference_client to pass vdb CI tests (#13865) 8ヶ月前

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
   cp .env.example .env 
  1. Generate a SECRET_KEY in the .env file.

bash for Linux

   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env

bash for Mac

   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. First, you need to add the poetry shell plugin, if you don’t have it already, in order to run in a virtual environment. [Note: Poetry shell is no longer a native command so you need to install the poetry plugin beforehand]

   poetry self add poetry-plugin-shell

Then, You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.12
   poetry install
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install -C api --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   poetry run -P api bash dev/pytest/pytest_all_tests.sh