You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

vector_service.py 9.6KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. import logging
  2. from typing import Optional
  3. from core.model_manager import ModelInstance, ModelManager
  4. from core.model_runtime.entities.model_entities import ModelType
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.index_processor.constant.index_type import IndexType
  8. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  9. from core.rag.models.document import Document
  10. from extensions.ext_database import db
  11. from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
  12. from models.dataset import Document as DatasetDocument
  13. from services.entities.knowledge_entities.knowledge_entities import ParentMode
  14. _logger = logging.getLogger(__name__)
  15. class VectorService:
  16. @classmethod
  17. def create_segments_vector(
  18. cls, keywords_list: Optional[list[list[str]]], segments: list[DocumentSegment], dataset: Dataset, doc_form: str
  19. ):
  20. documents: list[Document] = []
  21. document: Document | None = None
  22. for segment in segments:
  23. if doc_form == IndexType.PARENT_CHILD_INDEX:
  24. document = db.session.query(DatasetDocument).filter_by(id=segment.document_id).first()
  25. if not document:
  26. _logger.warning(
  27. "Expected DatasetDocument record to exist, but none was found, document_id=%s, segment_id=%s",
  28. segment.document_id,
  29. segment.id,
  30. )
  31. continue
  32. # get the process rule
  33. processing_rule = (
  34. db.session.query(DatasetProcessRule)
  35. .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
  36. .first()
  37. )
  38. if not processing_rule:
  39. raise ValueError("No processing rule found.")
  40. # get embedding model instance
  41. if dataset.indexing_technique == "high_quality":
  42. # check embedding model setting
  43. model_manager = ModelManager()
  44. if dataset.embedding_model_provider:
  45. embedding_model_instance = model_manager.get_model_instance(
  46. tenant_id=dataset.tenant_id,
  47. provider=dataset.embedding_model_provider,
  48. model_type=ModelType.TEXT_EMBEDDING,
  49. model=dataset.embedding_model,
  50. )
  51. else:
  52. embedding_model_instance = model_manager.get_default_model_instance(
  53. tenant_id=dataset.tenant_id,
  54. model_type=ModelType.TEXT_EMBEDDING,
  55. )
  56. else:
  57. raise ValueError("The knowledge base index technique is not high quality!")
  58. cls.generate_child_chunks(segment, document, dataset, embedding_model_instance, processing_rule, False)
  59. else:
  60. document = Document(
  61. page_content=segment.content,
  62. metadata={
  63. "doc_id": segment.index_node_id,
  64. "doc_hash": segment.index_node_hash,
  65. "document_id": segment.document_id,
  66. "dataset_id": segment.dataset_id,
  67. },
  68. )
  69. documents.append(document)
  70. if len(documents) > 0:
  71. index_processor = IndexProcessorFactory(doc_form).init_index_processor()
  72. index_processor.load(dataset, documents, with_keywords=True, keywords_list=keywords_list)
  73. @classmethod
  74. def update_segment_vector(cls, keywords: Optional[list[str]], segment: DocumentSegment, dataset: Dataset):
  75. # update segment index task
  76. # format new index
  77. document = Document(
  78. page_content=segment.content,
  79. metadata={
  80. "doc_id": segment.index_node_id,
  81. "doc_hash": segment.index_node_hash,
  82. "document_id": segment.document_id,
  83. "dataset_id": segment.dataset_id,
  84. },
  85. )
  86. if dataset.indexing_technique == "high_quality":
  87. # update vector index
  88. vector = Vector(dataset=dataset)
  89. vector.delete_by_ids([segment.index_node_id])
  90. vector.add_texts([document], duplicate_check=True)
  91. # update keyword index
  92. keyword = Keyword(dataset)
  93. keyword.delete_by_ids([segment.index_node_id])
  94. # save keyword index
  95. if keywords and len(keywords) > 0:
  96. keyword.add_texts([document], keywords_list=[keywords])
  97. else:
  98. keyword.add_texts([document])
  99. @classmethod
  100. def generate_child_chunks(
  101. cls,
  102. segment: DocumentSegment,
  103. dataset_document: DatasetDocument,
  104. dataset: Dataset,
  105. embedding_model_instance: ModelInstance,
  106. processing_rule: DatasetProcessRule,
  107. regenerate: bool = False,
  108. ):
  109. index_processor = IndexProcessorFactory(dataset.doc_form).init_index_processor()
  110. if regenerate:
  111. # delete child chunks
  112. index_processor.clean(dataset, [segment.index_node_id], with_keywords=True, delete_child_chunks=True)
  113. # generate child chunks
  114. document = Document(
  115. page_content=segment.content,
  116. metadata={
  117. "doc_id": segment.index_node_id,
  118. "doc_hash": segment.index_node_hash,
  119. "document_id": segment.document_id,
  120. "dataset_id": segment.dataset_id,
  121. },
  122. )
  123. # use full doc mode to generate segment's child chunk
  124. processing_rule_dict = processing_rule.to_dict()
  125. processing_rule_dict["rules"]["parent_mode"] = ParentMode.FULL_DOC.value
  126. documents = index_processor.transform(
  127. [document],
  128. embedding_model_instance=embedding_model_instance,
  129. process_rule=processing_rule_dict,
  130. tenant_id=dataset.tenant_id,
  131. doc_language=dataset_document.doc_language,
  132. )
  133. # save child chunks
  134. if documents and documents[0].children:
  135. index_processor.load(dataset, documents)
  136. for position, child_chunk in enumerate(documents[0].children, start=1):
  137. child_segment = ChildChunk(
  138. tenant_id=dataset.tenant_id,
  139. dataset_id=dataset.id,
  140. document_id=dataset_document.id,
  141. segment_id=segment.id,
  142. position=position,
  143. index_node_id=child_chunk.metadata["doc_id"],
  144. index_node_hash=child_chunk.metadata["doc_hash"],
  145. content=child_chunk.page_content,
  146. word_count=len(child_chunk.page_content),
  147. type="automatic",
  148. created_by=dataset_document.created_by,
  149. )
  150. db.session.add(child_segment)
  151. db.session.commit()
  152. @classmethod
  153. def create_child_chunk_vector(cls, child_segment: ChildChunk, dataset: Dataset):
  154. child_document = Document(
  155. page_content=child_segment.content,
  156. metadata={
  157. "doc_id": child_segment.index_node_id,
  158. "doc_hash": child_segment.index_node_hash,
  159. "document_id": child_segment.document_id,
  160. "dataset_id": child_segment.dataset_id,
  161. },
  162. )
  163. if dataset.indexing_technique == "high_quality":
  164. # save vector index
  165. vector = Vector(dataset=dataset)
  166. vector.add_texts([child_document], duplicate_check=True)
  167. @classmethod
  168. def update_child_chunk_vector(
  169. cls,
  170. new_child_chunks: list[ChildChunk],
  171. update_child_chunks: list[ChildChunk],
  172. delete_child_chunks: list[ChildChunk],
  173. dataset: Dataset,
  174. ):
  175. documents = []
  176. delete_node_ids = []
  177. for new_child_chunk in new_child_chunks:
  178. new_child_document = Document(
  179. page_content=new_child_chunk.content,
  180. metadata={
  181. "doc_id": new_child_chunk.index_node_id,
  182. "doc_hash": new_child_chunk.index_node_hash,
  183. "document_id": new_child_chunk.document_id,
  184. "dataset_id": new_child_chunk.dataset_id,
  185. },
  186. )
  187. documents.append(new_child_document)
  188. for update_child_chunk in update_child_chunks:
  189. child_document = Document(
  190. page_content=update_child_chunk.content,
  191. metadata={
  192. "doc_id": update_child_chunk.index_node_id,
  193. "doc_hash": update_child_chunk.index_node_hash,
  194. "document_id": update_child_chunk.document_id,
  195. "dataset_id": update_child_chunk.dataset_id,
  196. },
  197. )
  198. documents.append(child_document)
  199. delete_node_ids.append(update_child_chunk.index_node_id)
  200. for delete_child_chunk in delete_child_chunks:
  201. delete_node_ids.append(delete_child_chunk.index_node_id)
  202. if dataset.indexing_technique == "high_quality":
  203. # update vector index
  204. vector = Vector(dataset=dataset)
  205. if delete_node_ids:
  206. vector.delete_by_ids(delete_node_ids)
  207. if documents:
  208. vector.add_texts(documents, duplicate_check=True)
  209. @classmethod
  210. def delete_child_chunk_vector(cls, child_chunk: ChildChunk, dataset: Dataset):
  211. vector = Vector(dataset=dataset)
  212. vector.delete_by_ids([child_chunk.index_node_id])