You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

hit_testing_service.py 4.7KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. import logging
  2. import time
  3. from typing import Any
  4. from core.rag.datasource.retrieval_service import RetrievalService
  5. from core.rag.models.document import Document
  6. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  7. from extensions.ext_database import db
  8. from models.account import Account
  9. from models.dataset import Dataset, DatasetQuery
  10. default_retrieval_model = {
  11. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  12. "reranking_enable": False,
  13. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  14. "top_k": 2,
  15. "score_threshold_enabled": False,
  16. }
  17. class HitTestingService:
  18. @classmethod
  19. def retrieve(
  20. cls,
  21. dataset: Dataset,
  22. query: str,
  23. account: Account,
  24. retrieval_model: Any, # FIXME drop this any
  25. external_retrieval_model: dict,
  26. limit: int = 10,
  27. ) -> dict:
  28. start = time.perf_counter()
  29. # get retrieval model , if the model is not setting , using default
  30. if not retrieval_model:
  31. retrieval_model = dataset.retrieval_model or default_retrieval_model
  32. all_documents = RetrievalService.retrieve(
  33. retrieval_method=retrieval_model.get("search_method", "semantic_search"),
  34. dataset_id=dataset.id,
  35. query=query,
  36. top_k=retrieval_model.get("top_k", 2),
  37. score_threshold=retrieval_model.get("score_threshold", 0.0)
  38. if retrieval_model["score_threshold_enabled"]
  39. else 0.0,
  40. reranking_model=retrieval_model.get("reranking_model", None)
  41. if retrieval_model["reranking_enable"]
  42. else None,
  43. reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
  44. weights=retrieval_model.get("weights", None),
  45. )
  46. end = time.perf_counter()
  47. logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
  48. dataset_query = DatasetQuery(
  49. dataset_id=dataset.id, content=query, source="hit_testing", created_by_role="account", created_by=account.id
  50. )
  51. db.session.add(dataset_query)
  52. db.session.commit()
  53. return cls.compact_retrieve_response(query, all_documents) # type: ignore
  54. @classmethod
  55. def external_retrieve(
  56. cls,
  57. dataset: Dataset,
  58. query: str,
  59. account: Account,
  60. external_retrieval_model: dict,
  61. metadata_filtering_conditions: dict,
  62. ) -> dict:
  63. if dataset.provider != "external":
  64. return {
  65. "query": {"content": query},
  66. "records": [],
  67. }
  68. start = time.perf_counter()
  69. all_documents = RetrievalService.external_retrieve(
  70. dataset_id=dataset.id,
  71. query=cls.escape_query_for_search(query),
  72. external_retrieval_model=external_retrieval_model,
  73. metadata_filtering_conditions=metadata_filtering_conditions,
  74. )
  75. end = time.perf_counter()
  76. logging.debug(f"External knowledge hit testing retrieve in {end - start:0.4f} seconds")
  77. dataset_query = DatasetQuery(
  78. dataset_id=dataset.id, content=query, source="hit_testing", created_by_role="account", created_by=account.id
  79. )
  80. db.session.add(dataset_query)
  81. db.session.commit()
  82. return dict(cls.compact_external_retrieve_response(dataset, query, all_documents))
  83. @classmethod
  84. def compact_retrieve_response(cls, query: str, documents: list[Document]):
  85. records = RetrievalService.format_retrieval_documents(documents)
  86. return {
  87. "query": {
  88. "content": query,
  89. },
  90. "records": [record.model_dump() for record in records],
  91. }
  92. @classmethod
  93. def compact_external_retrieve_response(cls, dataset: Dataset, query: str, documents: list) -> dict[Any, Any]:
  94. records = []
  95. if dataset.provider == "external":
  96. for document in documents:
  97. record = {
  98. "content": document.get("content", None),
  99. "title": document.get("title", None),
  100. "score": document.get("score", None),
  101. "metadata": document.get("metadata", None),
  102. }
  103. records.append(record)
  104. return {
  105. "query": {"content": query},
  106. "records": records,
  107. }
  108. return {"query": {"content": query}, "records": []}
  109. @classmethod
  110. def hit_testing_args_check(cls, args):
  111. query = args["query"]
  112. if not query or len(query) > 250:
  113. raise ValueError("Query is required and cannot exceed 250 characters")
  114. @staticmethod
  115. def escape_query_for_search(query: str) -> str:
  116. return query.replace('"', '\\"')