| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 | 
							- import json
 - import os
 - import time
 - import uuid
 - from collections.abc import Generator
 - from unittest.mock import MagicMock
 - 
 - import pytest
 - 
 - from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
 - from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
 - from core.entities.provider_entities import CustomConfiguration, CustomProviderConfiguration, SystemConfiguration
 - from core.model_manager import ModelInstance
 - from core.model_runtime.entities.model_entities import ModelType
 - from core.model_runtime.model_providers import ModelProviderFactory
 - from core.workflow.entities.variable_pool import VariablePool
 - from core.workflow.enums import SystemVariableKey
 - from core.workflow.graph_engine.entities.graph import Graph
 - from core.workflow.graph_engine.entities.graph_init_params import GraphInitParams
 - from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
 - from core.workflow.nodes.event import RunCompletedEvent
 - from core.workflow.nodes.llm.node import LLMNode
 - from extensions.ext_database import db
 - from models.enums import UserFrom
 - from models.provider import ProviderType
 - from models.workflow import WorkflowNodeExecutionStatus, WorkflowType
 - 
 - """FOR MOCK FIXTURES, DO NOT REMOVE"""
 - from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
 - from tests.integration_tests.workflow.nodes.__mock.code_executor import setup_code_executor_mock
 - 
 - 
 - def init_llm_node(config: dict) -> LLMNode:
 -     graph_config = {
 -         "edges": [
 -             {
 -                 "id": "start-source-next-target",
 -                 "source": "start",
 -                 "target": "llm",
 -             },
 -         ],
 -         "nodes": [{"data": {"type": "start"}, "id": "start"}, config],
 -     }
 - 
 -     graph = Graph.init(graph_config=graph_config)
 - 
 -     init_params = GraphInitParams(
 -         tenant_id="1",
 -         app_id="1",
 -         workflow_type=WorkflowType.WORKFLOW,
 -         workflow_id="1",
 -         graph_config=graph_config,
 -         user_id="1",
 -         user_from=UserFrom.ACCOUNT,
 -         invoke_from=InvokeFrom.DEBUGGER,
 -         call_depth=0,
 -     )
 - 
 -     # construct variable pool
 -     variable_pool = VariablePool(
 -         system_variables={
 -             SystemVariableKey.QUERY: "what's the weather today?",
 -             SystemVariableKey.FILES: [],
 -             SystemVariableKey.CONVERSATION_ID: "abababa",
 -             SystemVariableKey.USER_ID: "aaa",
 -         },
 -         user_inputs={},
 -         environment_variables=[],
 -         conversation_variables=[],
 -     )
 -     variable_pool.add(["abc", "output"], "sunny")
 - 
 -     node = LLMNode(
 -         id=str(uuid.uuid4()),
 -         graph_init_params=init_params,
 -         graph=graph,
 -         graph_runtime_state=GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter()),
 -         config=config,
 -     )
 - 
 -     return node
 - 
 - 
 - @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
 - def test_execute_llm(setup_openai_mock):
 -     node = init_llm_node(
 -         config={
 -             "id": "llm",
 -             "data": {
 -                 "title": "123",
 -                 "type": "llm",
 -                 "model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
 -                 "prompt_template": [
 -                     {"role": "system", "text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}."},
 -                     {"role": "user", "text": "{{#sys.query#}}"},
 -                 ],
 -                 "memory": None,
 -                 "context": {"enabled": False},
 -                 "vision": {"enabled": False},
 -             },
 -         },
 -     )
 - 
 -     credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
 - 
 -     provider_instance = ModelProviderFactory().get_provider_instance("openai")
 -     model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
 -     provider_model_bundle = ProviderModelBundle(
 -         configuration=ProviderConfiguration(
 -             tenant_id="1",
 -             provider=provider_instance.get_provider_schema(),
 -             preferred_provider_type=ProviderType.CUSTOM,
 -             using_provider_type=ProviderType.CUSTOM,
 -             system_configuration=SystemConfiguration(enabled=False),
 -             custom_configuration=CustomConfiguration(provider=CustomProviderConfiguration(credentials=credentials)),
 -             model_settings=[],
 -         ),
 -         provider_instance=provider_instance,
 -         model_type_instance=model_type_instance,
 -     )
 -     model_instance = ModelInstance(provider_model_bundle=provider_model_bundle, model="gpt-3.5-turbo")
 -     model_schema = model_type_instance.get_model_schema("gpt-3.5-turbo")
 -     assert model_schema is not None
 -     model_config = ModelConfigWithCredentialsEntity(
 -         model="gpt-3.5-turbo",
 -         provider="openai",
 -         mode="chat",
 -         credentials=credentials,
 -         parameters={},
 -         model_schema=model_schema,
 -         provider_model_bundle=provider_model_bundle,
 -     )
 - 
 -     # Mock db.session.close()
 -     db.session.close = MagicMock()
 - 
 -     node._fetch_model_config = MagicMock(return_value=(model_instance, model_config))
 - 
 -     # execute node
 -     result = node._run()
 -     assert isinstance(result, Generator)
 - 
 -     for item in result:
 -         if isinstance(item, RunCompletedEvent):
 -             assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
 -             assert item.run_result.process_data is not None
 -             assert item.run_result.outputs is not None
 -             assert item.run_result.outputs.get("text") is not None
 -             assert item.run_result.outputs.get("usage", {})["total_tokens"] > 0
 - 
 - 
 - @pytest.mark.parametrize("setup_code_executor_mock", [["none"]], indirect=True)
 - @pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
 - def test_execute_llm_with_jinja2(setup_code_executor_mock, setup_openai_mock):
 -     """
 -     Test execute LLM node with jinja2
 -     """
 -     node = init_llm_node(
 -         config={
 -             "id": "llm",
 -             "data": {
 -                 "title": "123",
 -                 "type": "llm",
 -                 "model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
 -                 "prompt_config": {
 -                     "jinja2_variables": [
 -                         {"variable": "sys_query", "value_selector": ["sys", "query"]},
 -                         {"variable": "output", "value_selector": ["abc", "output"]},
 -                     ]
 -                 },
 -                 "prompt_template": [
 -                     {
 -                         "role": "system",
 -                         "text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}",
 -                         "jinja2_text": "you are a helpful assistant.\ntoday's weather is {{output}}.",
 -                         "edition_type": "jinja2",
 -                     },
 -                     {
 -                         "role": "user",
 -                         "text": "{{#sys.query#}}",
 -                         "jinja2_text": "{{sys_query}}",
 -                         "edition_type": "basic",
 -                     },
 -                 ],
 -                 "memory": None,
 -                 "context": {"enabled": False},
 -                 "vision": {"enabled": False},
 -             },
 -         },
 -     )
 - 
 -     credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
 - 
 -     provider_instance = ModelProviderFactory().get_provider_instance("openai")
 -     model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
 -     provider_model_bundle = ProviderModelBundle(
 -         configuration=ProviderConfiguration(
 -             tenant_id="1",
 -             provider=provider_instance.get_provider_schema(),
 -             preferred_provider_type=ProviderType.CUSTOM,
 -             using_provider_type=ProviderType.CUSTOM,
 -             system_configuration=SystemConfiguration(enabled=False),
 -             custom_configuration=CustomConfiguration(provider=CustomProviderConfiguration(credentials=credentials)),
 -             model_settings=[],
 -         ),
 -         provider_instance=provider_instance,
 -         model_type_instance=model_type_instance,
 -     )
 - 
 -     model_instance = ModelInstance(provider_model_bundle=provider_model_bundle, model="gpt-3.5-turbo")
 -     model_schema = model_type_instance.get_model_schema("gpt-3.5-turbo")
 -     assert model_schema is not None
 -     model_config = ModelConfigWithCredentialsEntity(
 -         model="gpt-3.5-turbo",
 -         provider="openai",
 -         mode="chat",
 -         credentials=credentials,
 -         parameters={},
 -         model_schema=model_schema,
 -         provider_model_bundle=provider_model_bundle,
 -     )
 - 
 -     # Mock db.session.close()
 -     db.session.close = MagicMock()
 - 
 -     node._fetch_model_config = MagicMock(return_value=(model_instance, model_config))
 - 
 -     # execute node
 -     result = node._run()
 - 
 -     for item in result:
 -         if isinstance(item, RunCompletedEvent):
 -             assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
 -             assert item.run_result.process_data is not None
 -             assert "sunny" in json.dumps(item.run_result.process_data)
 -             assert "what's the weather today?" in json.dumps(item.run_result.process_data)
 
 
  |