| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052 | import logging
from argparse import ArgumentTypeError
from typing import cast
from flask import request
from flask_login import current_user
from flask_restful import Resource, marshal, marshal_with, reqparse
from sqlalchemy import asc, desc, select
from werkzeug.exceptions import Forbidden, NotFound
import services
from controllers.console import api
from controllers.console.app.error import (
    ProviderModelCurrentlyNotSupportError,
    ProviderNotInitializeError,
    ProviderQuotaExceededError,
)
from controllers.console.datasets.error import (
    ArchivedDocumentImmutableError,
    DocumentAlreadyFinishedError,
    DocumentIndexingError,
    IndexingEstimateError,
    InvalidActionError,
    InvalidMetadataError,
)
from controllers.console.wraps import (
    account_initialization_required,
    cloud_edition_billing_rate_limit_check,
    cloud_edition_billing_resource_check,
    setup_required,
)
from core.errors.error import (
    LLMBadRequestError,
    ModelCurrentlyNotSupportError,
    ProviderTokenNotInitError,
    QuotaExceededError,
)
from core.indexing_runner import IndexingRunner
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.plugin.impl.exc import PluginDaemonClientSideError
from core.rag.extractor.entity.extract_setting import ExtractSetting
from extensions.ext_database import db
from fields.document_fields import (
    dataset_and_document_fields,
    document_fields,
    document_status_fields,
    document_with_segments_fields,
)
from libs.datetime_utils import naive_utc_now
from libs.login import login_required
from models import Dataset, DatasetProcessRule, Document, DocumentSegment, UploadFile
from services.dataset_service import DatasetService, DocumentService
from services.entities.knowledge_entities.knowledge_entities import KnowledgeConfig
class DocumentResource(Resource):
    def get_document(self, dataset_id: str, document_id: str) -> Document:
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")
        try:
            DatasetService.check_dataset_permission(dataset, current_user)
        except services.errors.account.NoPermissionError as e:
            raise Forbidden(str(e))
        document = DocumentService.get_document(dataset_id, document_id)
        if not document:
            raise NotFound("Document not found.")
        if document.tenant_id != current_user.current_tenant_id:
            raise Forbidden("No permission.")
        return document
    def get_batch_documents(self, dataset_id: str, batch: str) -> list[Document]:
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")
        try:
            DatasetService.check_dataset_permission(dataset, current_user)
        except services.errors.account.NoPermissionError as e:
            raise Forbidden(str(e))
        documents = DocumentService.get_batch_documents(dataset_id, batch)
        if not documents:
            raise NotFound("Documents not found.")
        return documents
class GetProcessRuleApi(Resource):
    @setup_required
    @login_required
    @account_initialization_required
    def get(self):
        req_data = request.args
        document_id = req_data.get("document_id")
        # get default rules
        mode = DocumentService.DEFAULT_RULES["mode"]
        rules = DocumentService.DEFAULT_RULES["rules"]
        limits = DocumentService.DEFAULT_RULES["limits"]
        if document_id:
            # get the latest process rule
            document = db.get_or_404(Document, document_id)
            dataset = DatasetService.get_dataset(document.dataset_id)
            if not dataset:
                raise NotFound("Dataset not found.")
            try:
                DatasetService.check_dataset_permission(dataset, current_user)
            except services.errors.account.NoPermissionError as e:
                raise Forbidden(str(e))
            # get the latest process rule
            dataset_process_rule = (
                db.session.query(DatasetProcessRule)
                .filter(DatasetProcessRule.dataset_id == document.dataset_id)
                .order_by(DatasetProcessRule.created_at.desc())
                .limit(1)
                .one_or_none()
            )
            if dataset_process_rule:
                mode = dataset_process_rule.mode
                rules = dataset_process_rule.rules_dict
        return {"mode": mode, "rules": rules, "limits": limits}
class DatasetDocumentListApi(Resource):
    @setup_required
    @login_required
    @account_initialization_required
    def get(self, dataset_id):
        dataset_id = str(dataset_id)
        page = request.args.get("page", default=1, type=int)
        limit = request.args.get("limit", default=20, type=int)
        search = request.args.get("keyword", default=None, type=str)
        sort = request.args.get("sort", default="-created_at", type=str)
        # "yes", "true", "t", "y", "1" convert to True, while others convert to False.
        try:
            fetch_val = request.args.get("fetch", default="false")
            if isinstance(fetch_val, bool):
                fetch = fetch_val
            else:
                if fetch_val.lower() in ("yes", "true", "t", "y", "1"):
                    fetch = True
                elif fetch_val.lower() in ("no", "false", "f", "n", "0"):
                    fetch = False
                else:
                    raise ArgumentTypeError(
                        f"Truthy value expected: got {fetch_val} but expected one of yes/no, true/false, t/f, y/n, 1/0 "
                        f"(case insensitive)."
                    )
        except (ArgumentTypeError, ValueError, Exception):
            fetch = False
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")
        try:
            DatasetService.check_dataset_permission(dataset, current_user)
        except services.errors.account.NoPermissionError as e:
            raise Forbidden(str(e))
        query = select(Document).filter_by(dataset_id=str(dataset_id), tenant_id=current_user.current_tenant_id)
        if search:
            search = f"%{search}%"
            query = query.filter(Document.name.like(search))
        if sort.startswith("-"):
            sort_logic = desc
            sort = sort[1:]
        else:
            sort_logic = asc
        if sort == "hit_count":
            sub_query = (
                db.select(DocumentSegment.document_id, db.func.sum(DocumentSegment.hit_count).label("total_hit_count"))
                .group_by(DocumentSegment.document_id)
                .subquery()
            )
            query = query.outerjoin(sub_query, sub_query.c.document_id == Document.id).order_by(
                sort_logic(db.func.coalesce(sub_query.c.total_hit_count, 0)),
                sort_logic(Document.position),
            )
        elif sort == "created_at":
            query = query.order_by(
                sort_logic(Document.created_at),
                sort_logic(Document.position),
            )
        else:
            query = query.order_by(
                desc(Document.created_at),
                desc(Document.position),
            )
        paginated_documents = db.paginate(select=query, page=page, per_page=limit, max_per_page=100, error_out=False)
        documents = paginated_documents.items
        if fetch:
            for document in documents:
                completed_segments = (
                    db.session.query(DocumentSegment)
                    .filter(
                        DocumentSegment.completed_at.isnot(None),
                        DocumentSegment.document_id == str(document.id),
                        DocumentSegment.status != "re_segment",
                    )
                    .count()
                )
                total_segments = (
                    db.session.query(DocumentSegment)
                    .filter(DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment")
                    .count()
                )
                document.completed_segments = completed_segments
                document.total_segments = total_segments
            data = marshal(documents, document_with_segments_fields)
        else:
            data = marshal(documents, document_fields)
        response = {
            "data": data,
            "has_more": len(documents) == limit,
            "limit": limit,
            "total": paginated_documents.total,
            "page": page,
        }
        return response
    @setup_required
    @login_required
    @account_initialization_required
    @marshal_with(dataset_and_document_fields)
    @cloud_edition_billing_resource_check("vector_space")
    @cloud_edition_billing_rate_limit_check("knowledge")
    def post(self, dataset_id):
        dataset_id = str(dataset_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")
        # The role of the current user in the ta table must be admin, owner, or editor
        if not current_user.is_dataset_editor:
            raise Forbidden()
        try:
            DatasetService.check_dataset_permission(dataset, current_user)
        except services.errors.account.NoPermissionError as e:
            raise Forbidden(str(e))
        parser = reqparse.RequestParser()
        parser.add_argument(
            "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
        )
        parser.add_argument("data_source", type=dict, required=False, location="json")
        parser.add_argument("process_rule", type=dict, required=False, location="json")
        parser.add_argument("duplicate", type=bool, default=True, nullable=False, location="json")
        parser.add_argument("original_document_id", type=str, required=False, location="json")
        parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
        parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
        parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
        parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")
        parser.add_argument(
            "doc_language", type=str, default="English", required=False, nullable=False, location="json"
        )
        args = parser.parse_args()
        knowledge_config = KnowledgeConfig(**args)
        if not dataset.indexing_technique and not knowledge_config.indexing_technique:
            raise ValueError("indexing_technique is required.")
        # validate args
        DocumentService.document_create_args_validate(knowledge_config)
        try:
            documents, batch = DocumentService.save_document_with_dataset_id(dataset, knowledge_config, current_user)
            dataset = DatasetService.get_dataset(dataset_id)
        except ProviderTokenNotInitError as ex:
            raise ProviderNotInitializeError(ex.description)
        except QuotaExceededError:
            raise ProviderQuotaExceededError()
        except ModelCurrentlyNotSupportError:
            raise ProviderModelCurrentlyNotSupportError()
        return {"dataset": dataset, "documents": documents, "batch": batch}
    @setup_required
    @login_required
    @account_initialization_required
    @cloud_edition_billing_rate_limit_check("knowledge")
    def delete(self, dataset_id):
        dataset_id = str(dataset_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if dataset is None:
            raise NotFound("Dataset not found.")
        # check user's model setting
        DatasetService.check_dataset_model_setting(dataset)
        try:
            document_ids = request.args.getlist("document_id")
            DocumentService.delete_documents(dataset, document_ids)
        except services.errors.document.DocumentIndexingError:
            raise DocumentIndexingError("Cannot delete document during indexing.")
        return {"result": "success"}, 204
class DatasetInitApi(Resource):
    @setup_required
    @login_required
    @account_initialization_required
    @marshal_with(dataset_and_document_fields)
    @cloud_edition_billing_resource_check("vector_space")
    @cloud_edition_billing_rate_limit_check("knowledge")
    def post(self):
        # The role of the current user in the ta table must be admin, owner, dataset_operator, or editor
        if not current_user.is_dataset_editor:
            raise Forbidden()
        parser = reqparse.RequestParser()
        parser.add_argument(
            "indexing_technique",
            type=str,
            choices=Dataset.INDEXING_TECHNIQUE_LIST,
            required=True,
            nullable=False,
            location="json",
        )
        parser.add_argument("data_source", type=dict, required=True, nullable=True, location="json")
        parser.add_argument("process_rule", type=dict, required=True, nullable=True, location="json")
        parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
        parser.add_argument(
            "doc_language", type=str, default="English", required=False, nullable=False, location="json"
        )
        parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
        parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
        parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")
        args = parser.parse_args()
        # The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
        if not current_user.is_dataset_editor:
            raise Forbidden()
        knowledge_config = KnowledgeConfig(**args)
        if knowledge_config.indexing_technique == "high_quality":
            if knowledge_config.embedding_model is None or knowledge_config.embedding_model_provider is None:
                raise ValueError("embedding model and embedding model provider are required for high quality indexing.")
            try:
                model_manager = ModelManager()
                model_manager.get_model_instance(
                    tenant_id=current_user.current_tenant_id,
                    provider=args["embedding_model_provider"],
                    model_type=ModelType.TEXT_EMBEDDING,
                    model=args["embedding_model"],
                )
            except InvokeAuthorizationError:
                raise ProviderNotInitializeError(
                    "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
                )
            except ProviderTokenNotInitError as ex:
                raise ProviderNotInitializeError(ex.description)
        # validate args
        DocumentService.document_create_args_validate(knowledge_config)
        try:
            dataset, documents, batch = DocumentService.save_document_without_dataset_id(
                tenant_id=current_user.current_tenant_id, knowledge_config=knowledge_config, account=current_user
            )
        except ProviderTokenNotInitError as ex:
            raise ProviderNotInitializeError(ex.description)
        except QuotaExceededError:
            raise ProviderQuotaExceededError()
        except ModelCurrentlyNotSupportError:
            raise ProviderModelCurrentlyNotSupportError()
        response = {"dataset": dataset, "documents": documents, "batch": batch}
        return response
class DocumentIndexingEstimateApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    def get(self, dataset_id, document_id):
        dataset_id = str(dataset_id)
        document_id = str(document_id)
        document = self.get_document(dataset_id, document_id)
        if document.indexing_status in {"completed", "error"}:
            raise DocumentAlreadyFinishedError()
        data_process_rule = document.dataset_process_rule
        data_process_rule_dict = data_process_rule.to_dict()
        response = {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []}
        if document.data_source_type == "upload_file":
            data_source_info = document.data_source_info_dict
            if data_source_info and "upload_file_id" in data_source_info:
                file_id = data_source_info["upload_file_id"]
                file = (
                    db.session.query(UploadFile)
                    .filter(UploadFile.tenant_id == document.tenant_id, UploadFile.id == file_id)
                    .first()
                )
                # raise error if file not found
                if not file:
                    raise NotFound("File not found.")
                extract_setting = ExtractSetting(
                    datasource_type="upload_file", upload_file=file, document_model=document.doc_form
                )
                indexing_runner = IndexingRunner()
                try:
                    estimate_response = indexing_runner.indexing_estimate(
                        current_user.current_tenant_id,
                        [extract_setting],
                        data_process_rule_dict,
                        document.doc_form,
                        "English",
                        dataset_id,
                    )
                    return estimate_response.model_dump(), 200
                except LLMBadRequestError:
                    raise ProviderNotInitializeError(
                        "No Embedding Model available. Please configure a valid provider "
                        "in the Settings -> Model Provider."
                    )
                except ProviderTokenNotInitError as ex:
                    raise ProviderNotInitializeError(ex.description)
                except PluginDaemonClientSideError as ex:
                    raise ProviderNotInitializeError(ex.description)
                except Exception as e:
                    raise IndexingEstimateError(str(e))
        return response, 200
class DocumentBatchIndexingEstimateApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    def get(self, dataset_id, batch):
        dataset_id = str(dataset_id)
        batch = str(batch)
        documents = self.get_batch_documents(dataset_id, batch)
        if not documents:
            return {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []}, 200
        data_process_rule = documents[0].dataset_process_rule
        data_process_rule_dict = data_process_rule.to_dict()
        info_list = []
        extract_settings = []
        for document in documents:
            if document.indexing_status in {"completed", "error"}:
                raise DocumentAlreadyFinishedError()
            data_source_info = document.data_source_info_dict
            # format document files info
            if data_source_info and "upload_file_id" in data_source_info:
                file_id = data_source_info["upload_file_id"]
                info_list.append(file_id)
            # format document notion info
            elif (
                data_source_info and "notion_workspace_id" in data_source_info and "notion_page_id" in data_source_info
            ):
                pages = []
                page = {"page_id": data_source_info["notion_page_id"], "type": data_source_info["type"]}
                pages.append(page)
                notion_info = {"workspace_id": data_source_info["notion_workspace_id"], "pages": pages}
                info_list.append(notion_info)
            if document.data_source_type == "upload_file":
                file_id = data_source_info["upload_file_id"]
                file_detail = (
                    db.session.query(UploadFile)
                    .filter(UploadFile.tenant_id == current_user.current_tenant_id, UploadFile.id == file_id)
                    .first()
                )
                if file_detail is None:
                    raise NotFound("File not found.")
                extract_setting = ExtractSetting(
                    datasource_type="upload_file", upload_file=file_detail, document_model=document.doc_form
                )
                extract_settings.append(extract_setting)
            elif document.data_source_type == "notion_import":
                extract_setting = ExtractSetting(
                    datasource_type="notion_import",
                    notion_info={
                        "notion_workspace_id": data_source_info["notion_workspace_id"],
                        "notion_obj_id": data_source_info["notion_page_id"],
                        "notion_page_type": data_source_info["type"],
                        "tenant_id": current_user.current_tenant_id,
                    },
                    document_model=document.doc_form,
                )
                extract_settings.append(extract_setting)
            elif document.data_source_type == "website_crawl":
                extract_setting = ExtractSetting(
                    datasource_type="website_crawl",
                    website_info={
                        "provider": data_source_info["provider"],
                        "job_id": data_source_info["job_id"],
                        "url": data_source_info["url"],
                        "tenant_id": current_user.current_tenant_id,
                        "mode": data_source_info["mode"],
                        "only_main_content": data_source_info["only_main_content"],
                    },
                    document_model=document.doc_form,
                )
                extract_settings.append(extract_setting)
            else:
                raise ValueError("Data source type not support")
            indexing_runner = IndexingRunner()
            try:
                response = indexing_runner.indexing_estimate(
                    current_user.current_tenant_id,
                    extract_settings,
                    data_process_rule_dict,
                    document.doc_form,
                    "English",
                    dataset_id,
                )
                return response.model_dump(), 200
            except LLMBadRequestError:
                raise ProviderNotInitializeError(
                    "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
                )
            except ProviderTokenNotInitError as ex:
                raise ProviderNotInitializeError(ex.description)
            except PluginDaemonClientSideError as ex:
                raise ProviderNotInitializeError(ex.description)
            except Exception as e:
                raise IndexingEstimateError(str(e))
class DocumentBatchIndexingStatusApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    def get(self, dataset_id, batch):
        dataset_id = str(dataset_id)
        batch = str(batch)
        documents = self.get_batch_documents(dataset_id, batch)
        documents_status = []
        for document in documents:
            completed_segments = (
                db.session.query(DocumentSegment)
                .filter(
                    DocumentSegment.completed_at.isnot(None),
                    DocumentSegment.document_id == str(document.id),
                    DocumentSegment.status != "re_segment",
                )
                .count()
            )
            total_segments = (
                db.session.query(DocumentSegment)
                .filter(DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment")
                .count()
            )
            # Create a dictionary with document attributes and additional fields
            document_dict = {
                "id": document.id,
                "indexing_status": "paused" if document.is_paused else document.indexing_status,
                "processing_started_at": document.processing_started_at,
                "parsing_completed_at": document.parsing_completed_at,
                "cleaning_completed_at": document.cleaning_completed_at,
                "splitting_completed_at": document.splitting_completed_at,
                "completed_at": document.completed_at,
                "paused_at": document.paused_at,
                "error": document.error,
                "stopped_at": document.stopped_at,
                "completed_segments": completed_segments,
                "total_segments": total_segments,
            }
            documents_status.append(marshal(document_dict, document_status_fields))
        data = {"data": documents_status}
        return data
class DocumentIndexingStatusApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    def get(self, dataset_id, document_id):
        dataset_id = str(dataset_id)
        document_id = str(document_id)
        document = self.get_document(dataset_id, document_id)
        completed_segments = (
            db.session.query(DocumentSegment)
            .filter(
                DocumentSegment.completed_at.isnot(None),
                DocumentSegment.document_id == str(document_id),
                DocumentSegment.status != "re_segment",
            )
            .count()
        )
        total_segments = (
            db.session.query(DocumentSegment)
            .filter(DocumentSegment.document_id == str(document_id), DocumentSegment.status != "re_segment")
            .count()
        )
        # Create a dictionary with document attributes and additional fields
        document_dict = {
            "id": document.id,
            "indexing_status": "paused" if document.is_paused else document.indexing_status,
            "processing_started_at": document.processing_started_at,
            "parsing_completed_at": document.parsing_completed_at,
            "cleaning_completed_at": document.cleaning_completed_at,
            "splitting_completed_at": document.splitting_completed_at,
            "completed_at": document.completed_at,
            "paused_at": document.paused_at,
            "error": document.error,
            "stopped_at": document.stopped_at,
            "completed_segments": completed_segments,
            "total_segments": total_segments,
        }
        return marshal(document_dict, document_status_fields)
class DocumentDetailApi(DocumentResource):
    METADATA_CHOICES = {"all", "only", "without"}
    @setup_required
    @login_required
    @account_initialization_required
    def get(self, dataset_id, document_id):
        dataset_id = str(dataset_id)
        document_id = str(document_id)
        document = self.get_document(dataset_id, document_id)
        metadata = request.args.get("metadata", "all")
        if metadata not in self.METADATA_CHOICES:
            raise InvalidMetadataError(f"Invalid metadata value: {metadata}")
        if metadata == "only":
            response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata_details}
        elif metadata == "without":
            dataset_process_rules = DatasetService.get_process_rules(dataset_id)
            document_process_rules = document.dataset_process_rule.to_dict()
            data_source_info = document.data_source_detail_dict
            response = {
                "id": document.id,
                "position": document.position,
                "data_source_type": document.data_source_type,
                "data_source_info": data_source_info,
                "dataset_process_rule_id": document.dataset_process_rule_id,
                "dataset_process_rule": dataset_process_rules,
                "document_process_rule": document_process_rules,
                "name": document.name,
                "created_from": document.created_from,
                "created_by": document.created_by,
                "created_at": document.created_at.timestamp(),
                "tokens": document.tokens,
                "indexing_status": document.indexing_status,
                "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
                "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
                "indexing_latency": document.indexing_latency,
                "error": document.error,
                "enabled": document.enabled,
                "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
                "disabled_by": document.disabled_by,
                "archived": document.archived,
                "segment_count": document.segment_count,
                "average_segment_length": document.average_segment_length,
                "hit_count": document.hit_count,
                "display_status": document.display_status,
                "doc_form": document.doc_form,
                "doc_language": document.doc_language,
            }
        else:
            dataset_process_rules = DatasetService.get_process_rules(dataset_id)
            document_process_rules = document.dataset_process_rule.to_dict()
            data_source_info = document.data_source_detail_dict
            response = {
                "id": document.id,
                "position": document.position,
                "data_source_type": document.data_source_type,
                "data_source_info": data_source_info,
                "dataset_process_rule_id": document.dataset_process_rule_id,
                "dataset_process_rule": dataset_process_rules,
                "document_process_rule": document_process_rules,
                "name": document.name,
                "created_from": document.created_from,
                "created_by": document.created_by,
                "created_at": document.created_at.timestamp(),
                "tokens": document.tokens,
                "indexing_status": document.indexing_status,
                "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
                "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
                "indexing_latency": document.indexing_latency,
                "error": document.error,
                "enabled": document.enabled,
                "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
                "disabled_by": document.disabled_by,
                "archived": document.archived,
                "doc_type": document.doc_type,
                "doc_metadata": document.doc_metadata_details,
                "segment_count": document.segment_count,
                "average_segment_length": document.average_segment_length,
                "hit_count": document.hit_count,
                "display_status": document.display_status,
                "doc_form": document.doc_form,
                "doc_language": document.doc_language,
            }
        return response, 200
class DocumentProcessingApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    @cloud_edition_billing_rate_limit_check("knowledge")
    def patch(self, dataset_id, document_id, action):
        dataset_id = str(dataset_id)
        document_id = str(document_id)
        document = self.get_document(dataset_id, document_id)
        # The role of the current user in the ta table must be admin, owner, dataset_operator, or editor
        if not current_user.is_dataset_editor:
            raise Forbidden()
        if action == "pause":
            if document.indexing_status != "indexing":
                raise InvalidActionError("Document not in indexing state.")
            document.paused_by = current_user.id
            document.paused_at = naive_utc_now()
            document.is_paused = True
            db.session.commit()
        elif action == "resume":
            if document.indexing_status not in {"paused", "error"}:
                raise InvalidActionError("Document not in paused or error state.")
            document.paused_by = None
            document.paused_at = None
            document.is_paused = False
            db.session.commit()
        else:
            raise InvalidActionError()
        return {"result": "success"}, 200
class DocumentDeleteApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    @cloud_edition_billing_rate_limit_check("knowledge")
    def delete(self, dataset_id, document_id):
        dataset_id = str(dataset_id)
        document_id = str(document_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if dataset is None:
            raise NotFound("Dataset not found.")
        # check user's model setting
        DatasetService.check_dataset_model_setting(dataset)
        document = self.get_document(dataset_id, document_id)
        try:
            DocumentService.delete_document(document)
        except services.errors.document.DocumentIndexingError:
            raise DocumentIndexingError("Cannot delete document during indexing.")
        return {"result": "success"}, 204
class DocumentMetadataApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    def put(self, dataset_id, document_id):
        dataset_id = str(dataset_id)
        document_id = str(document_id)
        document = self.get_document(dataset_id, document_id)
        req_data = request.get_json()
        doc_type = req_data.get("doc_type")
        doc_metadata = req_data.get("doc_metadata")
        # The role of the current user in the ta table must be admin, owner, dataset_operator, or editor
        if not current_user.is_dataset_editor:
            raise Forbidden()
        if doc_type is None or doc_metadata is None:
            raise ValueError("Both doc_type and doc_metadata must be provided.")
        if doc_type not in DocumentService.DOCUMENT_METADATA_SCHEMA:
            raise ValueError("Invalid doc_type.")
        if not isinstance(doc_metadata, dict):
            raise ValueError("doc_metadata must be a dictionary.")
        metadata_schema: dict = cast(dict, DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type])
        document.doc_metadata = {}
        if doc_type == "others":
            document.doc_metadata = doc_metadata
        else:
            for key, value_type in metadata_schema.items():
                value = doc_metadata.get(key)
                if value is not None and isinstance(value, value_type):
                    document.doc_metadata[key] = value
        document.doc_type = doc_type
        document.updated_at = naive_utc_now()
        db.session.commit()
        return {"result": "success", "message": "Document metadata updated."}, 200
class DocumentStatusApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    @cloud_edition_billing_resource_check("vector_space")
    @cloud_edition_billing_rate_limit_check("knowledge")
    def patch(self, dataset_id, action):
        dataset_id = str(dataset_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if dataset is None:
            raise NotFound("Dataset not found.")
        # The role of the current user in the ta table must be admin, owner, or editor
        if not current_user.is_dataset_editor:
            raise Forbidden()
        # check user's model setting
        DatasetService.check_dataset_model_setting(dataset)
        # check user's permission
        DatasetService.check_dataset_permission(dataset, current_user)
        document_ids = request.args.getlist("document_id")
        try:
            DocumentService.batch_update_document_status(dataset, document_ids, action, current_user)
        except services.errors.document.DocumentIndexingError as e:
            raise InvalidActionError(str(e))
        except ValueError as e:
            raise InvalidActionError(str(e))
        except NotFound as e:
            raise NotFound(str(e))
        return {"result": "success"}, 200
class DocumentPauseApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    @cloud_edition_billing_rate_limit_check("knowledge")
    def patch(self, dataset_id, document_id):
        """pause document."""
        dataset_id = str(dataset_id)
        document_id = str(document_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")
        document = DocumentService.get_document(dataset.id, document_id)
        # 404 if document not found
        if document is None:
            raise NotFound("Document Not Exists.")
        # 403 if document is archived
        if DocumentService.check_archived(document):
            raise ArchivedDocumentImmutableError()
        try:
            # pause document
            DocumentService.pause_document(document)
        except services.errors.document.DocumentIndexingError:
            raise DocumentIndexingError("Cannot pause completed document.")
        return {"result": "success"}, 204
class DocumentRecoverApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    @cloud_edition_billing_rate_limit_check("knowledge")
    def patch(self, dataset_id, document_id):
        """recover document."""
        dataset_id = str(dataset_id)
        document_id = str(document_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")
        document = DocumentService.get_document(dataset.id, document_id)
        # 404 if document not found
        if document is None:
            raise NotFound("Document Not Exists.")
        # 403 if document is archived
        if DocumentService.check_archived(document):
            raise ArchivedDocumentImmutableError()
        try:
            # pause document
            DocumentService.recover_document(document)
        except services.errors.document.DocumentIndexingError:
            raise DocumentIndexingError("Document is not in paused status.")
        return {"result": "success"}, 204
class DocumentRetryApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    @cloud_edition_billing_rate_limit_check("knowledge")
    def post(self, dataset_id):
        """retry document."""
        parser = reqparse.RequestParser()
        parser.add_argument("document_ids", type=list, required=True, nullable=False, location="json")
        args = parser.parse_args()
        dataset_id = str(dataset_id)
        dataset = DatasetService.get_dataset(dataset_id)
        retry_documents = []
        if not dataset:
            raise NotFound("Dataset not found.")
        for document_id in args["document_ids"]:
            try:
                document_id = str(document_id)
                document = DocumentService.get_document(dataset.id, document_id)
                # 404 if document not found
                if document is None:
                    raise NotFound("Document Not Exists.")
                # 403 if document is archived
                if DocumentService.check_archived(document):
                    raise ArchivedDocumentImmutableError()
                # 400 if document is completed
                if document.indexing_status == "completed":
                    raise DocumentAlreadyFinishedError()
                retry_documents.append(document)
            except Exception:
                logging.exception(f"Failed to retry document, document id: {document_id}")
                continue
        # retry document
        DocumentService.retry_document(dataset_id, retry_documents)
        return {"result": "success"}, 204
class DocumentRenameApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    @marshal_with(document_fields)
    def post(self, dataset_id, document_id):
        # The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
        if not current_user.is_dataset_editor:
            raise Forbidden()
        dataset = DatasetService.get_dataset(dataset_id)
        DatasetService.check_dataset_operator_permission(current_user, dataset)
        parser = reqparse.RequestParser()
        parser.add_argument("name", type=str, required=True, nullable=False, location="json")
        args = parser.parse_args()
        try:
            document = DocumentService.rename_document(dataset_id, document_id, args["name"])
        except services.errors.document.DocumentIndexingError:
            raise DocumentIndexingError("Cannot delete document during indexing.")
        return document
class WebsiteDocumentSyncApi(DocumentResource):
    @setup_required
    @login_required
    @account_initialization_required
    def get(self, dataset_id, document_id):
        """sync website document."""
        dataset_id = str(dataset_id)
        dataset = DatasetService.get_dataset(dataset_id)
        if not dataset:
            raise NotFound("Dataset not found.")
        document_id = str(document_id)
        document = DocumentService.get_document(dataset.id, document_id)
        if not document:
            raise NotFound("Document not found.")
        if document.tenant_id != current_user.current_tenant_id:
            raise Forbidden("No permission.")
        if document.data_source_type != "website_crawl":
            raise ValueError("Document is not a website document.")
        # 403 if document is archived
        if DocumentService.check_archived(document):
            raise ArchivedDocumentImmutableError()
        # sync document
        DocumentService.sync_website_document(dataset_id, document)
        return {"result": "success"}, 200
api.add_resource(GetProcessRuleApi, "/datasets/process-rule")
api.add_resource(DatasetDocumentListApi, "/datasets/<uuid:dataset_id>/documents")
api.add_resource(DatasetInitApi, "/datasets/init")
api.add_resource(
    DocumentIndexingEstimateApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-estimate"
)
api.add_resource(DocumentBatchIndexingEstimateApi, "/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-estimate")
api.add_resource(DocumentBatchIndexingStatusApi, "/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-status")
api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-status")
api.add_resource(DocumentDetailApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
api.add_resource(
    DocumentProcessingApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/<string:action>"
)
api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
api.add_resource(DocumentMetadataApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/metadata")
api.add_resource(DocumentStatusApi, "/datasets/<uuid:dataset_id>/documents/status/<string:action>/batch")
api.add_resource(DocumentPauseApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause")
api.add_resource(DocumentRecoverApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume")
api.add_resource(DocumentRetryApi, "/datasets/<uuid:dataset_id>/retry")
api.add_resource(DocumentRenameApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/rename")
api.add_resource(WebsiteDocumentSyncApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/website-sync")
 |