You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

vector_service.py 9.7KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228
  1. import logging
  2. from core.model_manager import ModelInstance, ModelManager
  3. from core.model_runtime.entities.model_entities import ModelType
  4. from core.rag.datasource.keyword.keyword_factory import Keyword
  5. from core.rag.datasource.vdb.vector_factory import Vector
  6. from core.rag.index_processor.constant.index_type import IndexType
  7. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  8. from core.rag.models.document import Document
  9. from extensions.ext_database import db
  10. from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
  11. from models.dataset import Document as DatasetDocument
  12. from services.entities.knowledge_entities.knowledge_entities import ParentMode
  13. logger = logging.getLogger(__name__)
  14. class VectorService:
  15. @classmethod
  16. def create_segments_vector(
  17. cls, keywords_list: list[list[str]] | None, segments: list[DocumentSegment], dataset: Dataset, doc_form: str
  18. ):
  19. documents: list[Document] = []
  20. for segment in segments:
  21. if doc_form == IndexType.PARENT_CHILD_INDEX:
  22. dataset_document = db.session.query(DatasetDocument).filter_by(id=segment.document_id).first()
  23. if not dataset_document:
  24. logger.warning(
  25. "Expected DatasetDocument record to exist, but none was found, document_id=%s, segment_id=%s",
  26. segment.document_id,
  27. segment.id,
  28. )
  29. continue
  30. # get the process rule
  31. processing_rule = (
  32. db.session.query(DatasetProcessRule)
  33. .where(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
  34. .first()
  35. )
  36. if not processing_rule:
  37. raise ValueError("No processing rule found.")
  38. # get embedding model instance
  39. if dataset.indexing_technique == "high_quality":
  40. # check embedding model setting
  41. model_manager = ModelManager()
  42. if dataset.embedding_model_provider:
  43. embedding_model_instance = model_manager.get_model_instance(
  44. tenant_id=dataset.tenant_id,
  45. provider=dataset.embedding_model_provider,
  46. model_type=ModelType.TEXT_EMBEDDING,
  47. model=dataset.embedding_model,
  48. )
  49. else:
  50. embedding_model_instance = model_manager.get_default_model_instance(
  51. tenant_id=dataset.tenant_id,
  52. model_type=ModelType.TEXT_EMBEDDING,
  53. )
  54. else:
  55. raise ValueError("The knowledge base index technique is not high quality!")
  56. cls.generate_child_chunks(
  57. segment, dataset_document, dataset, embedding_model_instance, processing_rule, False
  58. )
  59. else:
  60. rag_document = Document(
  61. page_content=segment.content,
  62. metadata={
  63. "doc_id": segment.index_node_id,
  64. "doc_hash": segment.index_node_hash,
  65. "document_id": segment.document_id,
  66. "dataset_id": segment.dataset_id,
  67. },
  68. )
  69. documents.append(rag_document)
  70. if len(documents) > 0:
  71. index_processor = IndexProcessorFactory(doc_form).init_index_processor()
  72. index_processor.load(dataset, documents, with_keywords=True, keywords_list=keywords_list)
  73. @classmethod
  74. def update_segment_vector(cls, keywords: list[str] | None, segment: DocumentSegment, dataset: Dataset):
  75. # update segment index task
  76. # format new index
  77. document = Document(
  78. page_content=segment.content,
  79. metadata={
  80. "doc_id": segment.index_node_id,
  81. "doc_hash": segment.index_node_hash,
  82. "document_id": segment.document_id,
  83. "dataset_id": segment.dataset_id,
  84. },
  85. )
  86. if dataset.indexing_technique == "high_quality":
  87. # update vector index
  88. vector = Vector(dataset=dataset)
  89. vector.delete_by_ids([segment.index_node_id])
  90. vector.add_texts([document], duplicate_check=True)
  91. else:
  92. # update keyword index
  93. keyword = Keyword(dataset)
  94. keyword.delete_by_ids([segment.index_node_id])
  95. # save keyword index
  96. if keywords and len(keywords) > 0:
  97. keyword.add_texts([document], keywords_list=[keywords])
  98. else:
  99. keyword.add_texts([document])
  100. @classmethod
  101. def generate_child_chunks(
  102. cls,
  103. segment: DocumentSegment,
  104. dataset_document: DatasetDocument,
  105. dataset: Dataset,
  106. embedding_model_instance: ModelInstance,
  107. processing_rule: DatasetProcessRule,
  108. regenerate: bool = False,
  109. ):
  110. index_processor = IndexProcessorFactory(dataset.doc_form).init_index_processor()
  111. if regenerate:
  112. # delete child chunks
  113. index_processor.clean(dataset, [segment.index_node_id], with_keywords=True, delete_child_chunks=True)
  114. # generate child chunks
  115. document = Document(
  116. page_content=segment.content,
  117. metadata={
  118. "doc_id": segment.index_node_id,
  119. "doc_hash": segment.index_node_hash,
  120. "document_id": segment.document_id,
  121. "dataset_id": segment.dataset_id,
  122. },
  123. )
  124. # use full doc mode to generate segment's child chunk
  125. processing_rule_dict = processing_rule.to_dict()
  126. processing_rule_dict["rules"]["parent_mode"] = ParentMode.FULL_DOC.value
  127. documents = index_processor.transform(
  128. [document],
  129. embedding_model_instance=embedding_model_instance,
  130. process_rule=processing_rule_dict,
  131. tenant_id=dataset.tenant_id,
  132. doc_language=dataset_document.doc_language,
  133. )
  134. # save child chunks
  135. if documents and documents[0].children:
  136. index_processor.load(dataset, documents)
  137. for position, child_chunk in enumerate(documents[0].children, start=1):
  138. child_segment = ChildChunk(
  139. tenant_id=dataset.tenant_id,
  140. dataset_id=dataset.id,
  141. document_id=dataset_document.id,
  142. segment_id=segment.id,
  143. position=position,
  144. index_node_id=child_chunk.metadata["doc_id"],
  145. index_node_hash=child_chunk.metadata["doc_hash"],
  146. content=child_chunk.page_content,
  147. word_count=len(child_chunk.page_content),
  148. type="automatic",
  149. created_by=dataset_document.created_by,
  150. )
  151. db.session.add(child_segment)
  152. db.session.commit()
  153. @classmethod
  154. def create_child_chunk_vector(cls, child_segment: ChildChunk, dataset: Dataset):
  155. child_document = Document(
  156. page_content=child_segment.content,
  157. metadata={
  158. "doc_id": child_segment.index_node_id,
  159. "doc_hash": child_segment.index_node_hash,
  160. "document_id": child_segment.document_id,
  161. "dataset_id": child_segment.dataset_id,
  162. },
  163. )
  164. if dataset.indexing_technique == "high_quality":
  165. # save vector index
  166. vector = Vector(dataset=dataset)
  167. vector.add_texts([child_document], duplicate_check=True)
  168. @classmethod
  169. def update_child_chunk_vector(
  170. cls,
  171. new_child_chunks: list[ChildChunk],
  172. update_child_chunks: list[ChildChunk],
  173. delete_child_chunks: list[ChildChunk],
  174. dataset: Dataset,
  175. ):
  176. documents = []
  177. delete_node_ids = []
  178. for new_child_chunk in new_child_chunks:
  179. new_child_document = Document(
  180. page_content=new_child_chunk.content,
  181. metadata={
  182. "doc_id": new_child_chunk.index_node_id,
  183. "doc_hash": new_child_chunk.index_node_hash,
  184. "document_id": new_child_chunk.document_id,
  185. "dataset_id": new_child_chunk.dataset_id,
  186. },
  187. )
  188. documents.append(new_child_document)
  189. for update_child_chunk in update_child_chunks:
  190. child_document = Document(
  191. page_content=update_child_chunk.content,
  192. metadata={
  193. "doc_id": update_child_chunk.index_node_id,
  194. "doc_hash": update_child_chunk.index_node_hash,
  195. "document_id": update_child_chunk.document_id,
  196. "dataset_id": update_child_chunk.dataset_id,
  197. },
  198. )
  199. documents.append(child_document)
  200. delete_node_ids.append(update_child_chunk.index_node_id)
  201. for delete_child_chunk in delete_child_chunks:
  202. delete_node_ids.append(delete_child_chunk.index_node_id)
  203. if dataset.indexing_technique == "high_quality":
  204. # update vector index
  205. vector = Vector(dataset=dataset)
  206. if delete_node_ids:
  207. vector.delete_by_ids(delete_node_ids)
  208. if documents:
  209. vector.add_texts(documents, duplicate_check=True)
  210. @classmethod
  211. def delete_child_chunk_vector(cls, child_chunk: ChildChunk, dataset: Dataset):
  212. vector = Vector(dataset=dataset)
  213. vector.delete_by_ids([child_chunk.index_node_id])