You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

hit_testing_service.py 6.1KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167
  1. import logging
  2. import time
  3. from typing import Any
  4. from core.app.app_config.entities import ModelConfig
  5. from core.model_runtime.entities import LLMMode
  6. from core.rag.datasource.retrieval_service import RetrievalService
  7. from core.rag.models.document import Document
  8. from core.rag.retrieval.dataset_retrieval import DatasetRetrieval
  9. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  10. from extensions.ext_database import db
  11. from models.account import Account
  12. from models.dataset import Dataset, DatasetQuery
  13. logger = logging.getLogger(__name__)
  14. default_retrieval_model = {
  15. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  16. "reranking_enable": False,
  17. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  18. "top_k": 4,
  19. "score_threshold_enabled": False,
  20. }
  21. class HitTestingService:
  22. @classmethod
  23. def retrieve(
  24. cls,
  25. dataset: Dataset,
  26. query: str,
  27. account: Account,
  28. retrieval_model: Any, # FIXME drop this any
  29. external_retrieval_model: dict,
  30. limit: int = 10,
  31. ):
  32. start = time.perf_counter()
  33. # get retrieval model , if the model is not setting , using default
  34. if not retrieval_model:
  35. retrieval_model = dataset.retrieval_model or default_retrieval_model
  36. document_ids_filter = None
  37. metadata_filtering_conditions = retrieval_model.get("metadata_filtering_conditions", {})
  38. if metadata_filtering_conditions:
  39. dataset_retrieval = DatasetRetrieval()
  40. from core.app.app_config.entities import MetadataFilteringCondition
  41. metadata_filtering_conditions = MetadataFilteringCondition(**metadata_filtering_conditions)
  42. metadata_filter_document_ids, metadata_condition = dataset_retrieval.get_metadata_filter_condition(
  43. dataset_ids=[dataset.id],
  44. query=query,
  45. metadata_filtering_mode="manual",
  46. metadata_filtering_conditions=metadata_filtering_conditions,
  47. inputs={},
  48. tenant_id="",
  49. user_id="",
  50. metadata_model_config=ModelConfig(provider="", name="", mode=LLMMode.CHAT, completion_params={}),
  51. )
  52. if metadata_filter_document_ids:
  53. document_ids_filter = metadata_filter_document_ids.get(dataset.id, [])
  54. if metadata_condition and not document_ids_filter:
  55. return cls.compact_retrieve_response(query, [])
  56. all_documents = RetrievalService.retrieve(
  57. retrieval_method=retrieval_model.get("search_method", "semantic_search"),
  58. dataset_id=dataset.id,
  59. query=query,
  60. top_k=retrieval_model.get("top_k", 4),
  61. score_threshold=retrieval_model.get("score_threshold", 0.0)
  62. if retrieval_model["score_threshold_enabled"]
  63. else 0.0,
  64. reranking_model=retrieval_model.get("reranking_model", None)
  65. if retrieval_model["reranking_enable"]
  66. else None,
  67. reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
  68. weights=retrieval_model.get("weights", None),
  69. document_ids_filter=document_ids_filter,
  70. )
  71. end = time.perf_counter()
  72. logger.debug("Hit testing retrieve in %s seconds", end - start)
  73. dataset_query = DatasetQuery(
  74. dataset_id=dataset.id, content=query, source="hit_testing", created_by_role="account", created_by=account.id
  75. )
  76. db.session.add(dataset_query)
  77. db.session.commit()
  78. return cls.compact_retrieve_response(query, all_documents) # type: ignore
  79. @classmethod
  80. def external_retrieve(
  81. cls,
  82. dataset: Dataset,
  83. query: str,
  84. account: Account,
  85. external_retrieval_model: dict,
  86. metadata_filtering_conditions: dict,
  87. ):
  88. if dataset.provider != "external":
  89. return {
  90. "query": {"content": query},
  91. "records": [],
  92. }
  93. start = time.perf_counter()
  94. all_documents = RetrievalService.external_retrieve(
  95. dataset_id=dataset.id,
  96. query=cls.escape_query_for_search(query),
  97. external_retrieval_model=external_retrieval_model,
  98. metadata_filtering_conditions=metadata_filtering_conditions,
  99. )
  100. end = time.perf_counter()
  101. logger.debug("External knowledge hit testing retrieve in %s seconds", end - start)
  102. dataset_query = DatasetQuery(
  103. dataset_id=dataset.id, content=query, source="hit_testing", created_by_role="account", created_by=account.id
  104. )
  105. db.session.add(dataset_query)
  106. db.session.commit()
  107. return dict(cls.compact_external_retrieve_response(dataset, query, all_documents))
  108. @classmethod
  109. def compact_retrieve_response(cls, query: str, documents: list[Document]) -> dict[Any, Any]:
  110. records = RetrievalService.format_retrieval_documents(documents)
  111. return {
  112. "query": {
  113. "content": query,
  114. },
  115. "records": [record.model_dump() for record in records],
  116. }
  117. @classmethod
  118. def compact_external_retrieve_response(cls, dataset: Dataset, query: str, documents: list) -> dict[Any, Any]:
  119. records = []
  120. if dataset.provider == "external":
  121. for document in documents:
  122. record = {
  123. "content": document.get("content", None),
  124. "title": document.get("title", None),
  125. "score": document.get("score", None),
  126. "metadata": document.get("metadata", None),
  127. }
  128. records.append(record)
  129. return {
  130. "query": {"content": query},
  131. "records": records,
  132. }
  133. return {"query": {"content": query}, "records": []}
  134. @classmethod
  135. def hit_testing_args_check(cls, args):
  136. query = args["query"]
  137. if not query or len(query) > 250:
  138. raise ValueError("Query is required and cannot exceed 250 characters")
  139. @staticmethod
  140. def escape_query_for_search(query: str) -> str:
  141. return query.replace('"', '\\"')