You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Vicky Guo 829472a1d7
switch to diffy_config with Pydantic in files, moderation and app (#6747)
1 rok temu
..
configs Enhance database URI security and add URL encoding (#6668) 1 rok temu
constants Feat/environment variables in workflow (#6515) 1 rok temu
contexts Feat/environment variables in workflow (#6515) 1 rok temu
controllers chore: make prompt generator max tokens configurable (#6693) 1 rok temu
core switch to diffy_config with Pydantic in files, moderation and app (#6747) 1 rok temu
docker fix: kill signal is not passed to the main process (#6159) 1 rok temu
events Feat/delete file when clean document (#5882) 1 rok temu
extensions fix tencent_cos_storage image-preview error is not a byte (#6652) 1 rok temu
fields fix(api/fields/workflow_fields.py): Add check in environment variables (#6621) 1 rok temu
libs fix(api/services/app_generate_service.py): Remove wrong type hints. (#6535) 1 rok temu
migrations Fix/6615 40 varchar limit on DatasetCollectionBinding and Embedding model name (#6723) 1 rok temu
models Fix/6615 40 varchar limit on DatasetCollectionBinding and Embedding model name (#6723) 1 rok temu
schedule Feat/environment variables in workflow (#6515) 1 rok temu
services chore: optimize asynchronous deletion performance of app related data (#6634) 1 rok temu
tasks chore: optimize asynchronous workflow deletion performance of app related data (#6639) 1 rok temu
templates feat: implement forgot password feature (#5534) 1 rok temu
tests feat(api/core/app/segments): Update segment types and variables (#6734) 1 rok temu
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 rok temu
.env.example chore: make prompt generator max tokens configurable (#6693) 1 rok temu
Dockerfile chore: skip pip upgrade preparation in api dockerfile (#5999) 1 rok temu
README.md Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 1 rok temu
app.py Feat/environment variables in workflow (#6515) 1 rok temu
commands.py feat: support AnalyticDB vector store (#5586) 1 rok temu
poetry.lock add xlsx support hyperlink extract (#6722) 1 rok temu
poetry.toml build: initial support for poetry build tool (#4513) 1 rok temu
pyproject.toml add xlsx support hyperlink extract (#6722) 1 rok temu

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.
   sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000
  3. If you need to debug local async processing, please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh